Solving a general system

Summary

Consider a linear system in matrix form

$$
A X=B, \quad A \in \mathbb{R}^{m, n}, \quad X \in \mathbb{R}^{n, 1}, \quad B \in \mathbb{R}^{m, 1} .
$$

The study of an example with $m=n=3$ led us to formulate the so-called theorems of Rouché and Capelli:
(RC1) The solution has at least one solution if and only if $\operatorname{rank}(A \mid B)=\operatorname{rank} A$. This is obviously true if $B=\mathbf{0}$.
(RC2) If $r=\operatorname{rank} A=\operatorname{rank}(A \mid B)$ then the general solution depends on $n-r$ free parameters. We can add to a particular solution any solution of the homogeneous equation $A X=\mathbf{0}$.

Explanation. If C_{1}, \ldots, C_{m} are the columns of A, the system can be written as an equation between column vectors:

$$
x_{1} C_{1}+\cdots+x_{n} C_{n}=B .
$$

This has a solution if and only if $B \in \mathscr{L}\left\{C_{1}, \ldots, C_{n}\right\}$, so the rank of A must not increase if we add B as a final column.

To find the general solution, it is best to apply ERO's to $(A \mid B)$ to make it super-reduced, with 0 's above and below the r markers. Any zero row for A must have a 0 on the right too.

We can make the $n-r$ 'unmarked' variables free parameters, and then express the 'marked' variables in terms of them.

