Row reduction and rank

Summary

The second matrix was obtained by row reducing the first:

$$
A=\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
3 & 4 & 5 & 6 \\
6 & 7 & 8 & 9 \\
9 & 9 & 9 & 9
\end{array}\right), \quad A^{\prime \prime}=\left(\begin{array}{cccc}
\boxed{1} & 0 & -1 & -2 \\
0 & \boxed{1} & 2 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Since $A^{\prime \prime}$ is step-reduced and has 2 markers, A has rank 2.
In this example, any two rows of A are linearly independent (neither is a multiple of the other). But each zero row of $A^{\prime \prime}$ corresponds to a linear relation between three rows of A :

$$
R_{3}-2 R_{2}+R_{1}=\mathbf{0}, \quad R_{4}-3 R_{2}+3 R_{1}=\mathbf{0}
$$

These relations DO NOT hold for the rows of $A^{\prime \prime}$.
Each unmarked column of $A^{\prime \prime}$ can be expressed as a linear combination of the marked columns:

$$
C_{3}=-C_{1}+2 C_{2}, \quad C_{4}=-2 C_{1}+3 C_{2} .
$$

These relations DO hold for the columns of A (or any matrix obtained from A by ERO's).

In general:

- The columns of a matrix that become marked after reduction will be LI to start with.
- Row operations preserve linear relations between columns, but not those between rows.

