Summary

To solve a linear system $A X=B$, we apply elementary row operations to the matrix

$$
M=(A \mid B) \in \mathbb{R}^{m, n+1}
$$

(or to A if $B=\mathbf{0}$). These ERO's do not change the solutions of the system.

The aim is to obtain a matrix M^{\prime} that is
step-reduced, with markers satisfying (M1), (M2), (M3), or (better!) a matrix $M^{\prime \prime}$ that is
super-reduced, satisfying (M2), (M3), (M4), (M5) \Rightarrow (M1).
The linear systems represented by M, M^{\prime} and $M^{\prime \prime}$ all have the same set of solutions.

The rank of M is the number of non-zero rows (or markers) of M^{\prime} or $M^{\prime \prime}$, and does not depend on the method of reduction. It is known that the super-reduced (or RREF) form $M^{\prime \prime}$ is unique.

Example. The following matrices all have rank $r=2$:

$$
\begin{aligned}
& M=\left(\begin{array}{ccc|c}
1 & 1 & 2 & 0 \\
3 & 5 & 8 & 0 \\
13 & 21 & 34 & 0
\end{array}\right) \\
& \left\{\begin{aligned}
x+y+2 z & =0 \\
3 x+5 y+8 z & =0 \\
13 x+21 y+34 z & =0
\end{aligned}\right. \\
& M^{\prime}=\left(\begin{array}{ccc|c}
\boxed{1} & 1 & 2 & 0 \\
0 & \boxed{2} & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \left\{\begin{array}{r}
x+y+2 z=0 \\
2 y+2 z=0
\end{array}\right. \\
& M^{\prime \prime}=\left(\begin{array}{ccc|c}
\boxed{1} & 0 & 1 & 0 \\
0 & \boxed{1} & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \left\{\begin{array}{r}
x+z=0 \\
y+z=0
\end{array}\right.
\end{aligned}
$$

The rank equals the number of independent rows in each matrix and the number of effective equations in each system. Here, the homogeneous system has $\infty^{n-r}=\infty^{1}$ solutions:

$$
X=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-t \\
-t \\
t
\end{array}\right)=t\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right) .
$$

