Elementary row operations

SUMMARY

The following system of 3 equations and 3 unknowns:

$$
\left\{\begin{array}{c}
x+2 y=1 \\
-x+2 y+2 z=0 \\
x-y-z=3
\end{array}\right.
$$

is equivalent to the matrix equation $A X=B$ in which $\operatorname{det} A=2$. The system therefore has a unique solution $X=A^{-1} B$. But to find this, we apply ERO's to the matrix

$$
\begin{gathered}
(A \mid B)=\left(\begin{array}{ccc|c}
1 & 2 & 0 & 1 \\
-1 & 2 & 2 & 0 \\
1 & -1 & -1 & 3
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 2 & 0 & 1 \\
0 & 4 & 2 & 1 \\
1 & -1 & -1 & 3
\end{array}\right) \\
\sim\left(\begin{array}{ccc|c}
1 & 2 & 0 & 1 \\
0 & 4 & 2 & 1 \\
0 & -3 & -1 & 2
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 2 & 0 & 1 \\
0 & 1 & \frac{1}{2} & \frac{1}{4} \\
0 & -3 & -1 & 2
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 2 & 0 & 1 \\
0 & 1 & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & \frac{1}{2} & \frac{11}{4}
\end{array}\right)
\end{gathered}
$$

The last matrix confirms that there is a unique solution. To find it, we can continue to simplify the left part of the matrix, working backwards from bottom right:

$$
\sim\left(\begin{array}{ccc|c}
1 & 2 & 0 & 1 \\
0 & 1 & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & 1 & \frac{11}{2}
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 2 & 0 & 1 \\
0 & 1 & 0 & -\frac{5}{2} \\
0 & 0 & 1 & \frac{11}{2}
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 0 & 0 & 6 \\
0 & 1 & 0 & -\frac{5}{2} \\
0 & 0 & 1 & \frac{11}{2}
\end{array}\right)
$$

The solution is therefore

$$
X=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
6 \\
-\frac{5}{2} \\
\frac{11}{2}
\end{array}\right) .
$$

An ERO of type (iii) (swapping two rows) is needed when, for example, the first row of A starts with a 0 .

