Let $f(x, y)=x^{3}-3 x y^{2}=\operatorname{Re}\left[(x+i y)^{3}\right]$.
$(0,0)$ is a critical point, a 'monkey saddle' with $\widehat{H f}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
The graph of f is the surface $z-f(x, y)=0$ and contains $P=(-1,1,2)$. Two tangent vectors at P are

$$
\boldsymbol{\sigma}_{u}=\left(1,0, \widehat{f_{x}}\right)=(1,0,0), \quad \boldsymbol{\sigma}_{v}=\left(0,1, \widehat{f_{y}}\right)=(0,1,6) ;
$$

they point along the graph sliced by the respective vertical planes $y=1, x=-1$ through P. A normal vector at P is

$$
\mathbf{n}=\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}=\left(-\widehat{f_{x}},-\widehat{f_{y}}, 1\right)=(0,-6,1)
$$

this is also the gradient of $z-f(x, y)$ at P.

The equation of the tangent plane at P is

$$
z=2+6(y-1) \quad \text { or } 6 y-z=4
$$

The parametric equation of the normal line at P is

$$
(x, y, z)=(-1,1,2)+t(0,-6,1)=(-1,1-6 t, 2+t)
$$

