Just as a mapping $\gamma:[a, b] \rightarrow \mathbb{R}^{3}$ parametrizes a curve in space, so a mapping

$$
\begin{gathered}
\boldsymbol{\sigma}: \mathbb{R}^{2} \supseteq D \rightarrow \mathbb{R}^{3} \\
\boldsymbol{\sigma}(u, v)=(x(u, v), y(u, v), z(u, v))
\end{gathered}
$$

parametrizes a surface S. We assume that each component function is differentiable at each point of the domain D.

If we fix v or u then σ defines a system of curves lying on S, and u, v become curvilinear coordinates on the surface. For example,

$$
\boldsymbol{\sigma}(u, v)=(\cos u \cos v, \sin u \cos v, \sin v)=(x, y, z)
$$

belongs to the sphere $S: x^{2}+y^{2}+z^{2}=1$. The formula for σ can be deduced by rotating the circle $(\cos v, 0, \sin v)$ in the $x z$ plane by an angle u around the z-axis. Hence, u, v represent longitude and latitude, and one takes $0 \leqslant u<2 \pi$, $-\frac{\pi}{2} \leqslant v \leqslant \frac{\pi}{2}$ to cover every point of S :
$u \mapsto \boldsymbol{\sigma}\left(u, v_{0}\right)$ is a parallel (a circle of constant latitude v_{0})
$v \mapsto \boldsymbol{\sigma}\left(u_{0}, v\right)$ is a meridian ($\frac{1}{2}$ circle of const longitude u_{0}.)
In general, the partial derivatives

$$
\begin{aligned}
& \boldsymbol{\sigma}_{u}=\frac{\partial \sigma}{\partial u}=\left(x_{u}, y_{u}, z_{u}\right) \\
& \boldsymbol{\sigma}_{v}=\frac{\partial \sigma}{\partial v}=\left(x_{v}, y_{v}, z_{v}\right)
\end{aligned}
$$

represent tangent vectors to the curves $v=$ const, $u=$ const. We say that σ is regular at $\left(u_{0}, v_{0}\right)$ if

$$
\mathbf{n}=\widehat{\boldsymbol{\sigma}_{u}} \times \widehat{\boldsymbol{\sigma}_{v}}=\boldsymbol{\sigma}_{u}\left(u_{0}, v_{0}\right) \times \boldsymbol{\sigma}_{v}\left(u_{0}, v_{0}\right)
$$

is non-zero. It is then a normal vector to S at $P_{0}=\boldsymbol{\sigma}\left(u_{0}, v_{0}\right)$. In the case of the sphere, σ is regular if $|v|<\pi / 2$, but at the north and south poles we have $\left\|\sigma_{u}\right\|=0$. A calculation showed that $\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}=(\cos v) \boldsymbol{\sigma}(u, v)$.

