## Examples and interpretations

1. The equation of the sphere $S$ with centre $C=(1,2,3)$ is

$$
(x-1)^{2}+(y-2)^{2}+(z-3)^{2}=r^{2}
$$

If $S$ passes through $P=(4,2,7)$ then $3^{2}+4^{2}=r^{2}$ so $r=5$ and

$$
x^{2}+y^{2}+z^{2}-2 x-4 y-6 z-11=0
$$

Note that (i) $(\nabla f)(P)$ is a multiple of $\overrightarrow{C P}$, and the tangent plane at $P$ is $3(x-1)+6(z-7)=0$; (ii) a quadric whose equation has one or more mixed terms $y z, z x, x y$ can never be a sphere.
2. Taylor expansion of $f(x, y)=3 x+4 y e^{x}-5 \log y$ at $(0,1)$ gives

$$
\begin{aligned}
f(x, y) & =4+7 x-(y-1)+\underbrace{\frac{1}{2}\left(4 x^{2}+8 x(y-1)+5(y-1)^{2}\right)+R} \\
& =5+7 x-y+x, y)
\end{aligned}
$$

where $g(x, y)$ is the height of the graph above the tangent plane $z=5+7 x-y$. In contrast to $f$, the function $g$ does have a critical point at $(0,1)$ and its behaviour is governed by the Hessian of $f$, giving (in this case) a local minimum. So the graph of $f$ lies entirely above its tangent plane near to $P=(0,1,4)$, touching it only at $P$.
3. To find the extreme values of a function $f(x, y)$ on a region of the plane with boundary, one has to compute the values of $f$ at local maxima and minima within the region, and compare these to the values of $f$ on the boundary.

Consider $f(x, y)=x^{2}+(y-1)^{2}$ on the region $0 \leqslant y \leqslant 4-x^{2}$. There is one critical point, namely at $(0,1)$ where $f$ achieves an absolute minimum of 0 . On the parabola $y=4-x^{2}, f$ becomes $g(x)=x^{2}+\left(3-x^{2}\right)^{2}=x^{4}-5 x^{2}+9$, and $g^{\prime}(x)=0$ if $x=0$ or $x= \pm \sqrt{2 / 5}$, with respective values $g(x)=9$ and $g(x)<9$. On the axis $y=0$ we get maximum values of $1+( \pm 2)^{2}=5$. So the absolute maximum of $f$ occurs at $(0,4)$ where $f=9$.

