An arbitrary conic $a x^{2}+2 b x y+c y^{2}+2 d x+2 e y+f=0$ is the intersection of the plane $z=1$ with the quadric

$$
a x^{2}+c y^{2}+f z^{2}+2 e y z+2 d z x+2 b x y=0
$$

equivalently

$$
\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{lll}
a & b & d \\
b & c & e \\
d & e & f
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=0
$$

We can diagonalize the 3×3 matrix by a rotation, and the equation becomes

$$
\lambda_{1} X^{2}+\lambda_{2} Y^{2}+\lambda_{3} Z^{2}=0
$$

If the eigenvalues λ_{i} are all non-zero, we may assume that $\lambda_{1}, \lambda_{2}>0$ and $\lambda_{3}<0$, so that the quadric is an elliptical cone. It is easy to visualize plane sections of such a cone that are hyperbolas, ellipses, parabolas or two intersecting lines.

Proposition. Let α, ℓ be skew lines. If ℓ is rotated around α (as axis) then ℓ sweeps out a hyperboloid (of one sheet).
Example. Take α the z-axis and ℓ (in parametric form) to be

$$
(x, y, z)=(\underbrace{1, t}, t) .
$$

Rotate ℓ by applying the matrix $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ to obtain

$$
\ell_{\theta}=\{(\cos \theta-t \sin \theta, \sin \theta+t \cos \theta, t): t \in \mathbb{R}\}
$$

a line which (for each fixed θ) lies on the hyperboloid

$$
x^{2}+y^{2}-z^{2}=1
$$

as does the line m_{θ} with $z=-t$ in place of $z=t$.

A cone is formed from straight lines which pass through its vertex and some fixed conic. For example,

$$
\left\{\left(s, s t^{2}, s t\right): s, t \in \mathbb{R}\right\}
$$

joins the origin to a parabola in the plane $x=1$. It consists of all the points of the quadric

$$
z^{2}=x y \text { or } X^{2}-Y^{2}-2 z^{2}=0
$$

(where $x=(X-Y) / \sqrt{2}$ and $y=(X+Y) / \sqrt{2}$ defines a rotation) minus the points $(0, u, 0)$ for $u \neq 0$.

The image shows the two families of straight lines present in the saddle-shaped hyperbolic paraboloid $z=x y$. Each green line (drawn in the lecture and including the y-axis) is

$$
\{(s, t, s t): t \in \mathbb{R}\}, \quad s \text { constant }
$$

and each red line (including the x-axis) is

$$
\{(s, t, s t): s \in \mathbb{R}\}, \quad t \text { constant } .
$$

