A *conic* $\mathscr C$ is the set of points (x,y) in $\mathbb R^2$ determined by an equation of the form

$$ax^2 + 2bxy + cy^2 + 2dx + 2ey + f = 0,$$

where a, ..., f are real numbers (with a, b, c not all zero). There are 8 essentially different types of conics!

Let
$$S = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$
 and $T = \begin{pmatrix} a & b & d \\ b & c & e \\ d & e & f \end{pmatrix}$.

If $\mathscr C$ has more than one point and does not contain a line, it is an ellipse, parabola or hyperbola and $\det T \neq 0$. In this case,

- \mathscr{C} is an ellipse \Leftrightarrow det S > 0
- \mathscr{C} is a hyperbola \Leftrightarrow det S < 0
- \mathscr{C} is a parabola \Leftrightarrow det S = 0

If $\det T = 0$ then

- $\det S > 0 \Rightarrow \mathscr{C}$ is a point.
- $\det S < 0 \Rightarrow \mathscr{C}$ is two incident lines.
- $\det S = 0 \Rightarrow \mathscr{C}$ is two parallel lines, or one, or \varnothing .

A *quadric* \mathcal{Q} is the locus of points (x, y, z) in \mathbb{R}^3 satisfying an equation of the form

$$\underbrace{ax^2 + by^2 + cz^2 + 2dyz + 2ezx + 2fxy}_{} + 2gx + 2hy + 2kz + \ell = 0$$

(with not all a, b, c, d, e, f zero). There are 15 types of quadrics!

Elliptic and hyperbolic paraboloids $z = ax^2 \pm by^2$:

Ellipsoids $ax^{2} + by^{2} + cz^{2} = 1$ with a, b, c > 0:

Hyperboloids and cone $ax^2 + by^2 - cz^2 = -\ell$ with a, b, c > 0:

8 types of cylinder over a conic including \emptyset , finally a point!