A conic \mathscr{C} is the set of points (x, y) in \mathbb{R}^{2} determined by an equation of the form

$$
\underbrace{a x^{2}+2 b x y+c y^{2}}+2 d x+2 e y+f=0,
$$

where a, \ldots, f are real numbers (with a, b, c not all zero). There are $\mathbf{8}$ essentially different types of conics!

Let $S=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ and $T=\left(\begin{array}{lll}a & b & d \\ b & c & e \\ d & e & f\end{array}\right)$.
If \mathscr{C} has more than one point and does not contain a line, it is an ellipse, parabola or hyperbola and $\operatorname{det} T \neq 0$. In this case,

- \mathscr{C} is an ellipse $\Leftrightarrow \operatorname{det} S>0$
- \mathscr{C} is a hyperbola $\Leftrightarrow \operatorname{det} S<0$
- \mathscr{C} is a parabola $\Leftrightarrow \operatorname{det} S=0$

If $\operatorname{det} T=0$ then

- $\operatorname{det} S>0 \Rightarrow \mathscr{C}$ is a point.
- $\operatorname{det} S<0 \Rightarrow \mathscr{C}$ is two incident lines.
- $\operatorname{det} S=0 \Rightarrow \mathscr{C}$ is two parallel lines, or one, or \varnothing.

A quadric \mathscr{Q} is the locus of points (x, y, z) in \mathbb{R}^{3} satisfying an equation of the form
$\underbrace{a x^{2}+b y^{2}+c z^{2}+2 d y z+2 e z x+2 f x y}+2 g x+2 h y+2 k z+\ell=0$
(with not all a, b, c, d, e, f zero). There are $\mathbf{1 5}$ types of quadrics!
Elliptic and hyperbolic paraboloids $z=a x^{2} \pm b y^{2}$:

Ellipsoids $a x^{2}+b y^{2}+c z^{2}=1$ with $a, b, c>0$:

Hyperboloids and cone $a x^{2}+b y^{2}-c z^{2}=-\ell$ with $a, b, c>0$:

8 types of cylinder over a conic including \varnothing, finally a point!

