Critical points

Proposition. If the second partial derivatives are continuous in a region containing P_0 then f(x, y) equals

$$f(x,y) = \widehat{f} + h\widehat{f_x} + k\widehat{f_y} + \frac{1}{2}\left(h^2\widehat{f_{xx}} + 2hk\widehat{f_{xy}} + k^2\widehat{f_{yy}}\right) + R$$

such that $R/(h^2 + k^2) \to 0$ as $(h, k) \to (0, 0)$.

Definition. P_0 is a *critical* or *stationary* point if $\widehat{\nabla f} = 0$, or equivalently $\widehat{f_x} = 0 = \widehat{f_y}$.

In this case, the Taylor expansion to second order becomes

$$\frac{\widehat{f} + \frac{1}{2} \left(h^2 \widehat{f_{xx}} + 2hk \widehat{f_{xy}} + k^2 \widehat{f_{yy}} \right)}{= f(x_0, y_0) + \frac{1}{2} (h \ k) \left(\begin{array}{c} \widehat{f_{xx}} & \widehat{f_{xy}} \\ \widehat{f_{xy}} & \widehat{f_{yy}} \end{array} \right) \begin{pmatrix} h \\ k \end{pmatrix},$$

and the behaviour of f near P_0 is governed by the Hessian matrix $A = \widehat{Hf}$ and its associated quadratic form.

Let λ_1 , λ_2 be the eigenvalues of *A*.

- If $\lambda_1, \lambda_2 > 0$ then f has a *local minimum* at P_0 , meaning $f(x_0, y_0) \leq f(x, y)$ for all (x, y) close to P_0 .
- If λ_1 , $\lambda_2 < 0$ then f has a *local maximum* at P_0 .
- If $\lambda_1 \lambda_2 < 0$ then f has a *saddle point* at P_0 .

In the first two cases, $\det A > 0$. If $\det A = 0$, one can say nothing without looking to third order. A local minimum or maximum is called an *extremum*, and any such point must be critical.

Example. We have seen that (0,0) is an *absolute maximum* for $f(x, y) = \cos(x + 2y)$, though \widehat{Hf} has eigenvalues 0, -5.

Explanations. Let $A = \widehat{Hf} = (Hf)(x_0, y_0)$. We can diagonalize *A* by a rotation:

$$P^{-1}AP = D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \qquad P^{-1} = P^T, \quad \det P = 1.$$

We have new coordinates ℓ , m, with $h^2 + k^2 = \ell^2 + m^2$ and

$$f(x, y) = \left[f(x_0, y_0) + \frac{1}{2} (\lambda_1 \ell^2 + \lambda_2 m^2) \right] + R,$$

but we can ignore *R* if both eigenvalues are non-zero.

The level curves of the Taylor polynomials in ℓ , m are *conics*, and the graphs of these polynomials are *quadrics*:

