Let $P_{0}=\left(x_{0}, y_{0}\right)$ and $h=x-x_{0}, k=y-y_{0}$.
Proposition. If the second partial derivatives are continuous in a region containing $P_{0}$ then $f(x, y)$ equals

$$
f(x, y)=\widehat{f}+h \widehat{f_{x}}+k \widehat{f_{y}}+\frac{1}{2}\left(h^{2} \widehat{f_{x x}}+2 h k \widehat{f_{x y}}+k^{2} \widehat{f_{y y}}\right)+R
$$

such that $R /\left(h^{2}+k^{2}\right) \rightarrow 0$ as $(h, k) \rightarrow(0,0)$.
Definition. $P_{0}$ is a critical or stationary point if $\widehat{\nabla f}=0$, or equivalently $\widehat{f_{x}}=0=\widehat{f_{y}}$.

In this case, the Taylor expansion to second order becomes

$$
\widehat{f}+\frac{1}{2}\left(h^{2} \widehat{f_{x x}}+2 h k \widehat{f_{x y}}+k^{2} \widehat{f_{y y}}\right)
$$

$$
=f\left(x_{0}, y_{0}\right)+\frac{1}{2}\left(\begin{array}{ll}
h & k
\end{array}\right)\left(\begin{array}{cc}
\widehat{f_{x x}} & \widehat{f_{x y}} \\
\widehat{f_{x y}} & \widehat{f_{y y}}
\end{array}\right)\binom{h}{k},
$$

and the behaviour of $f$ near $P_{0}$ is governed by the Hessian matrix $A=\widehat{H f}$ and its associated quadratic form.

Let $\lambda_{1}, \lambda_{2}$ be the eigenvalues of $A$.

- If $\lambda_{1}, \lambda_{2}>0$ then $f$ has a local minimum at $P_{0}$, meaning

$$
f\left(x_{0}, y_{0}\right) \leqslant f(x, y) \text { for all }(x, y) \text { close to } P_{0}
$$

- If $\lambda_{1}, \lambda_{2}<0$ then $f$ has a local maximum at $P_{0}$.
- If $\lambda_{1} \lambda_{2}<0$ then $f$ has a saddle point at $P_{0}$.

In the first two cases, $\operatorname{det} A>0$. If $\operatorname{det} A=0$, one can say nothing without looking to third order. A local minimum or maximum is called an extremum, and any such point must be critical.

Example. We have seen that $(0,0)$ is an absolute maximum for $f(x, y)=\cos (x+2 y)$, though $\widehat{H f}$ has eigenvalues $0,-5$.

Explanations. Let $A=\widehat{H f}=(H f)\left(x_{0}, y_{0}\right)$. We can diagonalize $A$ by a rotation:

$$
P^{-1} A P=D=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right), \quad P^{-1}=P^{T}, \quad \operatorname{det} P=1
$$

We have new coordinates $\ell, m$, with $h^{2}+k^{2}=\ell^{2}+m^{2}$ and

$$
f(x, y)=f\left(x_{0}, y_{0}\right)+\frac{1}{2}\left(\lambda_{1} \ell^{2}+\lambda_{2} m^{2}\right)+R
$$

but we can ignore $R$ if both eigenvalues are non-zero.
The level curves of the Taylor polynomials in $\ell, m$ are conics, and the graphs of these polynomials are quadrics:

$$
\lambda_{1}=-1, \lambda_{2}=-2
$$

$$
\lambda_{1}=-1, \lambda_{2}=2
$$



