Given a function $f: \mathbb{R}^{2} \supset D \rightarrow \mathbb{R}$, FIX a point

$$
P_{0}=\left(x_{0}, y_{0}\right) \in D .
$$

I shall use the following notation:

$$
\begin{gathered}
\hat{f}=f\left(x_{0}, y_{0}\right)=\text { value of } f \text { at } P_{0} \\
\widehat{f_{x}}=f_{x}\left(x_{0}, y_{0}\right)=\text { slope of } x \mapsto f\left(x, y_{0}\right) \text { at } x_{0} \\
\widehat{f_{y}}=f_{y}\left(x_{0}, y_{0}\right)=\text { slope of } y \mapsto f\left(x_{0}, y\right) \text { at } y_{0}
\end{gathered}
$$

These are all numbers. The slopes are those of curves, slices of the graph of f that lies above D in space.

The tangent plane to the graph at P_{0} has equation

$$
\begin{aligned}
z & =z_{0}+a\left(x-x_{0}\right)+b\left(y-y_{0}\right) \\
& =\hat{f}+\widehat{f}_{x}\left(x-x_{0}\right)+\widehat{f}_{y}\left(y-y_{0}\right) \\
& =\widehat{f}+h \widehat{f}_{x}+k \widehat{f}_{y}
\end{aligned}
$$

where $h=x-x_{0}$ and $k=y-y_{0}$. The displayed expression is the Taylor expansion of f to first order at P_{0}.

Proposition. If f_{x}, f_{y} exist and are continuous in a region containing P_{0} then

$$
f(x, y)=\widehat{f}+h \widehat{f_{x}}+k \widehat{f_{y}}+R
$$

where the remainder $R=R(x, y)$ satisfies

$$
R / \sqrt{h^{2}+k^{2}} \rightarrow 0 \quad \text { as } \quad(h, k) \rightarrow(0,0) .
$$

Equivalently,

$$
\frac{\left|f(x, y)-f\left(x_{0}, y_{0}\right)-\widehat{\nabla f} \cdot(h, k)\right|}{\|(h, k)\|} \rightarrow 0 \quad \text { as } \quad(h, k) \rightarrow \mathbf{0} .
$$

We say that f is differentiable at P_{0}, and its derivative is represented by the vector $\widehat{\nabla f}=\left(f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right)\right)$.

Example. The graph of $f(x, y)=\cos (x+2 y)$ is shown in red. We shall find Taylor expansions at the origin $P_{0}=(0,0)$, so here $h=x$ and $k=y$.

To first order, $f(x, y)$ equals

$$
\widehat{f}+h \widehat{f_{x}}+k \widehat{f_{y}}=f(0,0)+0+0=1
$$

The tangent plane (shown in blue) is horizontal, confirming that P_{0} is a critical point: $(\nabla f)(0,0)=0$.

To second order, $f(x, y)$ equals

$$
\begin{aligned}
\widehat{f}+h \widehat{f_{x}}+k \widehat{f_{y}}+\frac{1}{2}\left(h^{2} \widehat{f_{x x}}+2 h k \widehat{f_{x y}}+k^{2} \widehat{f_{y y}}\right) & =1-\frac{1}{2}\left(x^{2}+4 x y+4 y^{2}\right) \\
& =1-\frac{1}{2}(x+2 y)^{2}
\end{aligned}
$$

The graph of this quadratic polynomial is the green surface.

