
Second order partial derivatives 06/06

We have seen that the first partial derivatives of a function
f : R2 ⊇ D → R are used to define the tangent plane to its
graph at a given point P0. This gives a first approximation to
f at P0.

One can define various higher order partial derivatives, that
can be used in a similar way. We shall concentrate on
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These are all functions, whose values at a given point are
defined by limits such as

fxx(x0, y0) = lim
h→0

fx(x0 + h,y0)− fx(x0, y0)
h

.

But it is not normally necessary to revert to this definition.

Example. If r =
√
x2 +y2 then

f(x,y) = log r = 1
2 log(x2 +y2),

and
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r
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r 2
, fy =

y
r 2
.

It was shown that f satisfies Laplace’s equation

fxx + fyy = 0.
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If f(x,y) = p(x)q(y) then

fxy = p′(x)q′(y) = fyx.

For functions one normally encounters (at least, those with
continuous second derivatives), it is always true that

fxy = fyx.

It follows that

(Hf)(x0, y0) =
(
fxx(x0, y0) fxy(x0, y0)
fyx(x0, y0) yyy(x0, y0)

)
∈ R2,2

is a symmetric matrix. It is called the Hessian of f at P0.

A more complicated example. Let D = {(x, t) : t > 0}, and

f(x, t) = 1√
t
e−
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4t .

Then
ft = (−1
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−3/2 + 1

4x
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and it was shown that f satisfies the equation

ft = fxx

(similar to that representing the temperature f at time t > 0
and position x along a heated rod). Now fix P0= (0,1). Since

fxx(0,1) = −1
2, fxt(0,1) = 0, ftt(0,1) = 3

4,

the Hessian of f at P0 equals(
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