Second order partial derivatives 06/06

We have seen that the first partial derivatives of a function
f:R> 2 D — R are used to define the tangent plane to its
graph at a given point P,. This gives a first approximation to
f at Py.

One can define various higher order partial derivatives, that
can be used in a similar way. We shall concentrate on
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These are all functions, whose values at a given point are
defined by limits such as

Sx(xo+ h, yo) — fx(x0,20)
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But it is not normally necessary to revert to this definition.

Example. If v = /x2 + y?2 then

fx,y) =logr = Slog(x? + »?),

Sxx (X0, 0) = }Ll_l'%

and
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It was shown that f satisfies Laplace’s equation

Sxx + fyy =0.



If f(x,y)=p(x)q(y) then
Sy =P ()q" (y) = fyx.

For functions one normally encounters (at least, those with
continuous second derivatives), it is always true that

f Xy — f VX
It follows that

Fxx (X0, V0) fxy(XanO) ) c R2:2
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is a symmetric matrix. It is called the Hessian of f at P,.

A more complicated example. Let D = {(x,t) :t > 0}, and

1 =
f(x,t) :ﬁe r,

Then )
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and it was shown that f satisfies the equation

ft :fxx

(similar to that representing the temperature f at time ¢t > 0
and position x along a heated rod). Now fix Py = (0, 1). Since

fex(0,1) = =3, fxe(0,1) =0, f:(0,1) =4,
the Hessian of f at Py equals
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