We have seen that the first partial derivatives of a function $f: \mathbb{R}^{2} \supseteq D \rightarrow \mathbb{R}$ are used to define the tangent plane to its graph at a given point P_{0}. This gives a first approximation to f at P_{0}.

One can define various higher order partial derivatives, that can be used in a similar way. We shall concentrate on

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\left(f_{x}\right)_{x}=f_{x x} \\
& \frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\left(f_{y}\right)_{x}=f_{y x} \\
& \frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\left(f_{x}\right)_{y}=f_{x y} \\
& \frac{\partial^{2} f}{\partial y^{2}}=f_{y y} .
\end{aligned}
$$

These are all functions, whose values at a given point are defined by limits such as

$$
f_{x x}\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f_{x}\left(x_{0}+h, y_{0}\right)-f_{x}\left(x_{0}, y_{0}\right)}{h} .
$$

But it is not normally necessary to revert to this definition.

Example. If $r=\sqrt{x^{2}+y^{2}}$ then

$$
f(x, y)=\log r=\frac{1}{2} \log \left(x^{2}+y^{2}\right)
$$

and

$$
f_{x}=\frac{r_{x}}{r}=\frac{x}{r^{2}}, \quad f_{y}=\frac{y}{r^{2}}
$$

It was shown that f satisfies Laplace's equation

$$
f_{x x}+f_{y y}=0
$$

If $f(x, y)=p(x) q(y)$ then

$$
f_{x y}=p^{\prime}(x) q^{\prime}(y)=f_{y x} .
$$

For functions one normally encounters (at least, those with continuous second derivatives), it is always true that

$$
f_{x y}=f_{y x}
$$

It follows that

$$
(H f)\left(x_{0}, y_{0}\right)=\left(\begin{array}{ll}
f_{x x}\left(x_{0}, y_{0}\right) & f_{x y}\left(x_{0}, y_{0}\right) \\
f_{y x}\left(x_{0}, y_{0}\right) & y_{y y}\left(x_{0}, y_{0}\right)
\end{array}\right) \in \mathbb{R}^{2,2}
$$

is a symmetric matrix. It is called the Hessian of f at P_{0}.

A more complicated example. Let $D=\{(x, t): t>0\}$, and

$$
f(x, t)=\frac{1}{\sqrt{t}} e^{-\frac{x^{2}}{4 t}}
$$

Then

$$
f_{t}=\left(-\frac{1}{2} t^{-3 / 2}+\frac{1}{4} x^{2} t^{-5 / 2}\right) e^{-\frac{x^{2}}{4 t}}
$$

and it was shown that f satisfies the equation

$$
f_{t}=f_{x x}
$$

(similar to that representing the temperature f at time $t>0$ and position x along a heated rod). Now fix $P_{0}=(0,1)$. Since

$$
f_{x x}(0,1)=-\frac{1}{2}, \quad f_{x t}(0,1)=0, \quad f_{t t}(0,1)=\frac{3}{4},
$$

the Hessian of f at P_{0} equals

$$
\left(\begin{array}{cc}
-\frac{1}{2} & 0 \\
0 & \frac{3}{4}
\end{array}\right)
$$

