Scalar functions of 2 and 3 variables

Consider $F: \mathbb{R}^{3} \supseteq D \rightarrow \mathbb{R}$. Suppose the partial derivatives

$$
F_{x}=\frac{\partial F}{\partial x}, \quad F_{y}=\frac{\partial F}{\partial y}, \quad F_{z}=\frac{\partial F}{\partial z}
$$

exist, and that

$$
\nabla F=\left(F_{x}, F_{y}, F_{z}\right)
$$

is non-zero at all points of D.
Theorem. Fix $c \in f(D)$. Then

$$
S=F^{-1}(c)=\left\{(x, y, z) \in \mathbb{R}^{3}: F(x, y, z)=c\right\}
$$

is a 'smooth' surface. Moreover if $P=\left(x_{0}, y_{0}, z_{0}\right) \in S$ then the vector $(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)$ is orthogonal to S at P.
Examples. If $F(x, y, z)=x^{2}+4 y^{2}+16 z^{2}$ and $c=16$ then S is an ellipsoid. If $F(x, y, z)=x^{3}-y^{2}$ and $c=0$ then S has contains the z-axis $(x=0=y)$ as a sharp edge.

Suppose that $\gamma(t)$ is a straight line such that

$$
P_{0}=\gamma(0)=\left(x_{0}, y_{0}, z_{0}\right) \in S,
$$

and consider the values

$$
F(t)=(F \circ \gamma)(t)=F\left(x_{0}+t A, y_{0}+t B, z_{0}+t C\right)
$$

of F along this line. The line is tangent to S if and only if $F^{\prime}(0)=(\nabla F) \cdot(A, B, C)$ is zero. These tangent lines generate the tangent plane

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-x_{0}\right)=0
$$

to S at P_{0} whose normal vector

$$
\mathbf{n}=(a, b, c)=\left(F_{x}\left(P_{0}\right), F_{y}\left(P_{0}\right), F_{z}\left(P_{0}\right)\right)
$$

can therefore be taken to be the gradient computed at P_{0}.

Suppose that $f: \mathbb{R}^{2} \supseteq D \rightarrow \mathbb{R}$. The graph of f is the surface $z=f(x, y)$. If we set

$$
F(x, y, z)=f(x, y)-z
$$

it is the 'level surface' $F(x, y, z)=0$, and

$$
-\nabla F=\left(-f_{x},-f_{y}, 1\right)
$$

points upwards, everywhere orthogonal to the graph. (In the picture, the red arrow represents $-\nabla F$ computed at a point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ on the graph. $)$

Fix $\left(x_{0}, y_{0}\right)$ and set $a=f_{x}\left(x_{0}, y_{0}\right)$ and $b=f_{y}\left(x_{0}, y_{0}\right)$. The tangent plane to the graph at $\left(x_{0}, y_{0}\right)$ has equation

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)-\left(z-z_{0}\right)=0
$$

where $z_{0}=f\left(x_{0}, y_{0}\right)$. This plane (in green) approximates the graph of f at P_{0} and is itself the graph

$$
z=z_{0}+a\left(x-x_{0}\right)+b\left(y-y_{0}\right)
$$

of a simpler function (a linear mapping plus a constant).

