SUMMARY

Here is a linear system of m equations in n unknowns:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \\
\cdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

It is equivalent to the single matrix equation

$$
\begin{equation*}
A X=B \quad \text { (also written } A \mathbf{x}=\mathbf{b}) \tag{1}
\end{equation*}
$$

where

$$
A=\left(a_{i j}\right) \in \mathbb{R}^{m, n}
$$

is the matrix of assigned coefficients visible on the left (so $i=1, \ldots, m$ and $j=1, \ldots, n$),

$$
X=\left(x_{j}\right) \in \mathbb{R}^{n, 1}
$$

is the column of unknowns (variables), and

$$
B=\left(b_{i}\right) \in \mathbb{R}^{m, 1}
$$

is the column of assigned numbers on the right.
A solution is merely a column vector X satisfying (1); it represents one set of values of x_{1}, \ldots, x_{n} satisfying all m equations simultaneously. The system is said to be inconsistent (or the equations incompatible) if there is no such solution.

The system is homogeneous if $B=0$. This always has the trivial solution $X=0$, meaning $x_{1}=\cdots=x_{n}=0$. There may or may not be other solutions.

