We shall study the geometry of a function $f: D \rightarrow \mathbb{R}$ where $D=\operatorname{dom}(f)$ is a subset of the plane \mathbb{R}^{2}. Next time we shall do the same when $D \subseteq \mathbb{R}^{3}$.

Consider a curve in D parametrized by

$$
\gamma:[a, b] \rightarrow D, \quad \gamma(t)=(x(t), y(t))
$$

with nowhere-zero tangent (velocity) vector $\gamma^{\prime}(t)$. To define the line integral $\int_{\gamma} f$, we considered the composition

$$
(f \circ \gamma)(t)=f(x(t), y(t))=f(t)
$$

and multiplied by $\left\|\gamma^{\prime}(t)\right\|$ before integrating to get a number.
This time we shall differentiate $f(t)$ to obtain a new function defined along the curve, namely

$$
f^{\prime}(t)=\frac{d}{d t} f(x(t), y(t)) .
$$

The chain rule states that this equals

$$
\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=f_{x} x^{\prime}(t)+f_{y} y^{\prime}(t)=(\nabla f) \cdot \gamma^{\prime}(t) .
$$

Example 1. If $f(x, y)=p(x) q(y)$ then

$$
\begin{aligned}
f^{\prime}(t) & =\left(p^{\prime}(x(t)) x^{\prime}(t)\right) q(y(t))+p(x(t))\left(q^{\prime}(y(t)) y^{\prime}(t)\right) \\
& =x^{\prime}(t) f_{x}+y^{\prime}(t) f_{y} .
\end{aligned}
$$

For the chain rule to work, all derivatives must be continuous, and the gradient is calculated at the point $\gamma(t)=(x(t), y(t))$.

Example 2. If $\gamma(t)=\left(x_{0}+t, y_{0}\right)$ is a line parallel to the x-axis,

$$
f^{\prime}(0)=\lim _{t \rightarrow 0} \frac{f\left(x_{0}+t, y_{0}\right)}{t}=f_{x}\left(x_{0}, y_{0}\right)
$$

measures the rate of change of f in the x-direction.

If $\gamma(t)=\left(x_{0}+t A, y_{0}+t B\right)$ is a line through $\left(x_{0}, y_{0}\right)$,

$$
f^{\prime}(0)=\lim _{t \rightarrow 0} \frac{f\left(x_{0}+t A, y_{0}+t B\right)}{t}=A f_{x}\left(x_{0}, y_{0}\right)+B f_{y}\left(x_{0}, y_{0}\right)
$$

is the directional derivative relative to the vector $\mathbf{p}=(A, B)$, sometimes written

$$
\nabla_{\mathbf{p}} f=\frac{d f}{d \mathbf{p}}=(\nabla f) \cdot \mathbf{p}
$$

In general,

$$
f^{\prime}(t)=(\nabla f) \cdot \gamma^{\prime}(t)=\left(\begin{array}{ll}
f_{x} & f_{y}
\end{array}\right)\binom{x^{\prime}}{y^{\prime}} .
$$

Once we fix t so that $f_{x}, f_{y}, x^{\prime}, y^{\prime}$ are numbers, we can regard $f^{\prime}(t)$ as a composition of linear mappings:

$$
\mathbb{R}^{\left(f_{x} f_{y}\right)} \mathbb{R}^{2} \stackrel{\binom{x^{\prime}}{y^{\prime}}}{\longleftarrow} \mathbb{R},
$$

derived from the composition

$$
\mathbb{R} \stackrel{f}{\leftarrow} D \stackrel{\gamma}{\leftarrow}[a, b] .
$$

and the choice of starting point t.
Corollary. If the scalar function f is constant along γ then $(\nabla f)(\gamma(t))$ is orthogonal to $\gamma^{\prime}(t)$. The gradient vector field ∇f is in fact orthogonal to the level curves of C at all points where it is non-zero.

Example 3. If $f(x, y)=x^{2}+y^{2}$, the level curves $f=c$ are circles (providing $c>0$). The vector $\nabla f=2(x, y)$ points radially, everywhere orthogonal to the circles. Now let

$$
f(x, y)=\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\binom{x}{y}=a x^{2}+2 b x y+c y^{2}
$$

be a quadratic form. Then

$$
\nabla f=2(a x+b y, b x+c y)=2\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

The eigenvectors of the 2×2 matrix determine the axes of symmetry for which ∇f is perpendicular to the level curves.

