Functions to and from \mathbb{R}^n

Let $F: D \to \mathbb{R}^m$ be a function (mapping) where $D \subseteq \mathbb{R}^n$.

Examples:

$$\begin{array}{ll} y \colon [0, 2\pi] \to \mathbb{R}^3, & t \mapsto (\cos t, \sin t, t) \\ f \colon \mathbb{R}^3 \setminus \{\mathbf{0}\} \to \mathbb{R}, & (x, y, z) \mapsto \frac{1}{x^2 + y^2 + z^2} = \frac{1}{r^2} \\ f_A \colon \mathbb{R}^n \to \mathbb{R}^m, & X \mapsto AX, \quad A \in \mathbb{R}^{m,n} \text{ (a linear map)} \end{array}$$

Notation. We shall write $\mathbf{v} = (x, y, z) \in \mathbb{R}^3$ but $\mathbf{x} = (x_1, \dots, x_n), \ \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$

Definition. The *distance* between $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is

$$\|\mathbf{x}-\mathbf{y}\| = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}.$$

This is the usual distance for n = 2, 3 by Pythagoras:

dist
$$((x, y), (x', y'))^2 = (x - x')^2 + (y - y')^2$$
,

and generalizes the absolute value for n = 1:

dist
$$(5, -2) = |5 - (-2)| = 7$$
.

Let $F: \mathbb{R}^n \supseteq D \to \mathbb{R}^m$, so

$$F(\mathbf{x}) = (F_1(\mathbf{x}), \dots, F_m(\mathbf{x}))$$

= $(F_1(x_1, \dots, x_n), \dots, F_m(x_1, \dots, x_n))$

We want to say what it means for *F* to be continuous. The definition is the same as that for an ordinary function, and is best explained using limits:

Let $\mathbf{a} \in \mathbb{R}^n$. We say that $\lim_{\mathbf{x}\to\mathbf{a}} F(\mathbf{x})$ exists if there exists $\underline{\ell} \in \mathbb{R}^m$ such that " $F(\mathbf{x})$ approaches $\underline{\ell}$ whenever \mathbf{x} approaches \mathbf{a} ." This means: given $\frac{1}{10}$, there exists $\delta > 0$ such that

$$0 < \|\mathbf{x} - \mathbf{a}\| < \delta \quad \Rightarrow \quad \|F(\mathbf{x}) - \underline{\ell}\| < \frac{1}{10}.$$

(It is important to note that we are not allowed to test x = a). Now replace $\frac{1}{10}$ by an arbitrary $\varepsilon > 0$! It may be that $a \notin D$ so that F(a) is not defined, but if it is: Definition. $F: \mathbb{R}^n \supseteq D \to \mathbb{R}^m$ is *continuous* at $a \in D$ if

$$\lim_{\mathbf{x}\to\mathbf{a}} F(\mathbf{x}) \text{ exists and equals } F(\mathbf{a}).$$

Equivalently, given $\varepsilon > 0$, $\exists \delta > 0$ such that

$$\|\mathbf{x} - \mathbf{a}\| < \delta \quad \Rightarrow \quad \|F(\mathbf{x}) - F(\mathbf{a})\| < \varepsilon.$$

Since $||F(\mathbf{x})||^2 = \sum |F_k(\mathbf{x})|^2$, *F* will be continuous if and only if the components F_1, \ldots, F_m are all continuous. Thus, we only considered examples with m = 1 and n = 2:

Let $D = \mathbb{R}^2 \setminus \{(0, 0)\}$. Then we showed that

$$f(x, y) = \frac{x}{\sqrt{x^2 + y^2}} = \cos \theta \quad \text{is not continuous at } \mathbf{a} = (0, 0).$$
$$G(x, y) = \begin{cases} 0 & \text{if } (x, y) = (0, 0) \\ \frac{xy}{\sqrt{x^2 + y^2}} & \text{otherwise} \end{cases} \quad \text{is continous at } (0, 0).$$

One can appreciate the definition of continuity with the

Proposition. Any linear mapping $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous at every point of its domain $D = \mathbb{R}^n$!

Proof. Let $A \in \mathbb{R}^{m,n}$ be the matrix associated to f (relative to the canonical bases) and let $\mathbf{x}, \mathbf{a} \in \mathbb{R}^{n,1}$. Then

$$||f(\mathbf{x}) - f(\mathbf{a})|| = ||A\mathbf{x} - A\mathbf{a}|| = ||A(\mathbf{x} - \mathbf{a})||.$$

It can be shown (not easily even if m = n = 2) that the last term is less than or equal to $||A|| ||\mathbf{x} - \mathbf{a}||$ where $||A|| = \sqrt{\sum a_{ij}^2}$. Anyway,

$$\|\mathbf{x} - \mathbf{a}\| < \frac{1}{10\|A\|} \Rightarrow \|f(\mathbf{x}) - f(\mathbf{a})\| < \frac{1}{10}$$

(we can assume that *A* is not the zero matrix so $||A|| \neq 0$), and continuity follows replacing $\frac{1}{10}$ by an arbitrary $\varepsilon > 0$.