Let $F: D \rightarrow \mathbb{R}^{m}$ be a function (mapping) where $D \subseteq \mathbb{R}^{n}$.

## Examples:

$$
\begin{array}{ll}
\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{3}, & t \mapsto(\cos t, \sin t, t) \\
f: \mathbb{R}^{3} \backslash\{\mathbf{0}\} \rightarrow \mathbb{R}, & (x, y, z) \mapsto \frac{1}{x^{2}+y^{2}+z^{2}}=\frac{1}{r^{2}} \\
f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, & X \mapsto A X, \quad A \in \mathbb{R}^{m, n} \quad \text { (a linear map) }
\end{array}
$$

Notation. We shall write $\mathbf{v}=(x, y, z) \in \mathbb{R}^{3}$
but $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$
Definition. The distance between $x, y \in \mathbb{R}^{n}$ is

$$
\|\mathbf{x}-\mathbf{y}\|=\sqrt{\sum_{k=1}^{n}\left(x_{k}-y_{k}\right)^{2}}
$$

This is the usual distance for $n=2,3$ by Pythagoras:

$$
\operatorname{dist}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)^{2}=\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}
$$

and generalizes the absolute value for $n=1$ :

$$
\operatorname{dist}(5,-2)=|5-(-2)|=7
$$

Let $F: \mathbb{R}^{n} \supseteq D \rightarrow \mathbb{R}^{m}$, so

$$
\begin{aligned}
F(\mathbf{x}) & =\left(F_{1}(\mathbf{x}), \ldots, F_{m}(\mathbf{x})\right) \\
& =\left(F_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, F_{m}\left(x_{1}, \ldots, x_{n}\right)\right) .
\end{aligned}
$$

We want to say what it means for $F$ to be continuous. The definition is the same as that for an ordinary function, and is best explained using limits:
Let $\mathbf{a} \in \mathbb{R}^{n}$. We say that $\lim _{\mathbf{x} \rightarrow \mathrm{a}} F(\mathbf{x})$ exists if there exists $\underline{\ell} \in \mathbb{R}^{m}$ such that " $F(\mathbf{x})$ approaches $\underline{\ell}$ whenever $\mathbf{x}$ approaches a."
This means: given $\frac{1}{10}$, there exists $\delta>0$ such that

$$
0<\|\mathbf{x}-\mathbf{a}\|<\delta \quad \Rightarrow \quad\|F(\mathbf{x})-\underline{\ell}\|<\frac{1}{10} .
$$

(It is important to note that we are not allowed to test $\mathbf{x}=\mathbf{a}$ ). Now replace $\frac{1}{10}$ by an arbitrary $\varepsilon>0$ !

It may be that $\mathbf{a} \notin D$ so that $F(\mathbf{a})$ is not defined, but if it is:
Definition. $F: \mathbb{R}^{n} \supseteq D \rightarrow \mathbb{R}^{m}$ is continuous at $\mathbf{a} \in D$ if

$$
\lim _{\mathrm{x} \rightarrow \mathrm{a}} F(\mathbf{x}) \text { exists and equals } F(\mathbf{a}) .
$$

Equivalently, given $\varepsilon>0, \exists \delta>0$ such that

$$
\|\mathbf{x}-\mathbf{a}\|<\delta \quad \Rightarrow \quad\|F(\mathbf{x})-F(\mathbf{a})\|<\varepsilon
$$

Since $\|F(\mathbf{x})\|^{2}=\sum\left|F_{k}(\mathbf{x})\right|^{2}, F$ will be continuous if and only if the components $F_{1}, \ldots, F_{m}$ are all continuous. Thus, we only considered examples with $m=1$ and $n=2$ :

Let $D=\mathbb{R}^{2} \backslash\{(0,0)\}$. Then we showed that
$f(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}}=\cos \theta$ is not continuous at $\mathbf{a}=(0,0)$.
$G(x, y)=\left\{\begin{array}{l}0 \quad \text { if }(x, y)=(0,0) \\ \frac{x y}{\sqrt{x^{2}+y^{2}}} \text { otherwise }\end{array}\right.$ is continous at $(0,0)$.
One can appreciate the definition of continuity with the
Proposition. Any linear mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at every point of its domain $D=\mathbb{R}^{n}$ !

Proof. Let $A \in \mathbb{R}^{m, n}$ be the matrix associated to $f$ (relative to the canonical bases) and let $x, a \in \mathbb{R}^{n, 1}$. Then

$$
\|f(\mathbf{x})-f(\mathbf{a})\|=\|A \mathbf{x}-A \mathbf{a}\|=\|A(\mathbf{x}-\mathbf{a})\| .
$$

It can be shown (not easily even if $m=n=2$ ) that the last term is less than or equal to $\|A\|\|\mathbf{x}-\mathbf{a}\|$ where $\|A\|=\sqrt{\sum a_{i j}{ }^{2}}$. Anyway,

$$
\|\mathbf{x}-\mathbf{a}\|<\frac{1}{10\|A\|} \quad \Rightarrow \quad\|f(\mathbf{x})-f(\mathbf{a})\|<\frac{1}{10}
$$

(we can assume that $A$ is not the zero matrix so $\|A\| \neq 0$ ), and continuity follows replacing $\frac{1}{10}$ by an arbitrary $\varepsilon>0$.

