Let $\gamma(t)=(x(t), y(t), z(t))$ be a space curve.
Its speed

$$
\frac{d s}{d t}=\left\|\gamma^{\prime}(t)\right\|=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}}
$$

represents the rate of change of arc length s measured along the curve.

We can express s as a function of t by integrating:

$$
s(t)=\int\left\|\gamma^{\prime}(t)\right\| d t+\text { constant }
$$

If we fix the start $\gamma(a)$ and the end $\gamma(b)$ of the curve, the length of the curve equals

$$
\ell(\gamma)=s(b)-s(a)=\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t .
$$

If $\left\|\gamma^{\prime}(t)\right\|=1$ then $s=t+c$ and the curve has unit speed. In this case (or if $s=-t+c$), $\gamma^{\prime}(t)$ is a unit tangent vector.

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a continuous function. It defines a function $f \circ \gamma$ on the curve by composition:

$$
f(t)=f(\gamma(t))=f(x(t), y(t), z(t)) .
$$

Definition. The line integral of f along the curve is

$$
\int_{\gamma} f=\int_{a}^{b} f(t)\left\|\gamma^{\prime}(t)\right\| d t .
$$

Up to sign, this is independent of the way in which the curve is parametrized, and in theory we can always use arc length:

$$
\int_{\gamma} f=\int_{s(a)}^{s(b)} f(s) d s .
$$

The length $\ell(\gamma)$ is the integral of the constant function 1 .

