SUMMARY

A curve in space is described by a mapping

$$y: I \rightarrow \mathbb{R}^3$$
 $t \mapsto (x(t), y(t), z(t)).$

We usually require the components to be differentiable, and

$$y'(t) = (x'(t), y'(t), z'(t))$$

is the *velocity* at 'time' t. If $\gamma'(t) \neq 0$ it represents a vector *tangent* to the image at $\gamma(t)$.

Example. If $y(t) = (x_0 + At, y_0 + Bt, z_0 + Ct)$ then

$$\gamma'(t) = (A, B, C) = \mathbf{p}$$

is a constant vector parallel to the line $\gamma = \text{Im}(\gamma)$.

If z(t) is identically zero (or absent), y is a *plane curve*. In this case, it can also be described by one implicit equation relating x and y.

Example. If

$$\gamma(t) = \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$$

then $x^2 + y^2 = 1$ and Im(y) is a circle (with $t = \tan \frac{\theta}{2}$.)