SUMMARY

A curve in space is described by a mapping

$$
\begin{aligned}
\gamma: I & \rightarrow \mathbb{R}^{3} \\
t & \mapsto(x(t), y(t), z(t)) .
\end{aligned}
$$

We usually require the components to be differentiable, and

$$
\gamma^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)
$$

is the velocity at 'time' t. If $\gamma^{\prime}(t) \neq \mathbf{0}$ it represents a vector tangent to the image at $\gamma(t)$.
Example. If $\gamma(t)=\left(x_{0}+A t, y_{0}+B t, z_{0}+C t\right)$ then

$$
\gamma^{\prime}(t)=(A, B, C)=\mathbf{p}
$$

is a constant vector parallel to the line $r=\operatorname{Im}(\gamma)$.
If $z(t)$ is identically zero (or absent), γ is a plane curve. In this case, it can also be described by one implicit equation relating x and y.
Example. If

$$
\gamma(t)=\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right)
$$

then $x^{2}+y^{2}=1$ and $\operatorname{Im}(\gamma)$ is a circle (with $t=\tan \frac{\theta}{2}$.)

