SUMMARY

A line r is determined by a vector $\mathbf{p}=(A, B, C)$ parallel to it and a point P_{0} on it. If $\mathbf{v}_{0}=O \vec{P}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$, a generic point P on r is

$$
(x, y, z)=\left(x_{0}+A t, y_{0}+B t, z_{0}+C t\right), \quad t \in \mathbb{R}
$$

Its position vector is

$$
\overrightarrow{O P}=\mathbf{v}=\mathbf{v}_{0}+t \mathbf{p},
$$

and so

$$
\mathbf{v} \times \mathbf{p}=\mathbf{q}
$$

where \mathbf{p} and $\mathbf{q}=\mathbf{v}_{0} \times \mathbf{p}$ are fixed vectors such that $\mathbf{p} \cdot \mathbf{q}=0$.
Given two distinct lines r_{1}, r_{2}, there are three possibilities, namely they are
(i) parallel ($\mathbf{p}_{1}, \mathbf{p}_{2}$ are proportional), or
(ii) incident (r_{1}, r_{2} intersect in a single point), or
(iii) skew (there is no plane that contains both r_{1}, r_{2}).

Given equations for r_{1}, r_{2} one must first check that they are neither coincident nor parallel, and then solve equations to see whether or not there exists a point of intersection.
In (ii), the plane containing r_{1}, r_{2} will have a normal vector

$$
\mathbf{n}=\mathbf{p}_{1} \times \mathbf{p}_{2}
$$

