SUMMARY

A line r is determined by a vector $\mathbf{p} = (A, B, C)$ parallel to it and a point P_0 on it. If $\mathbf{v}_0 = O\vec{P}_0 = (x_0, y_0, z_0)$, a generic point P on r is

$$(x, y, z) = (x_0 + At, y_0 + Bt, z_0 + Ct), t \in \mathbb{R}.$$

Its position vector is

$$OP = \mathbf{v} = \mathbf{v}_0 + t\mathbf{p},$$

and so

 $\mathbf{v} \times \mathbf{p} = \mathbf{q}$

where **p** and $\mathbf{q} = \mathbf{v}_0 \times \mathbf{p}$ are fixed vectors such that $\mathbf{p} \cdot \mathbf{q} = 0$.

Given two distinct lines r_1, r_2 , there are three possibilities, namely they are

(i) *parallel* (p_1 , p_2 are proportional), or

(ii) *incident* (r_1 , r_2 intersect in a single point), or

(iii) *skew* (there is no plane that contains both r_1, r_2).

Given equations for r_1 , r_2 one must first check that they are neither coincident nor parallel, and then solve equations to see whether or not there exists a point of intersection.

In (ii), the plane containing r_1, r_2 will have a normal vector

$$\mathbf{n}=\mathbf{p}_1\times\mathbf{p}_2.$$