Summary

Having fixed Cartesian coordinates in space, an equation

$$
a x+b y+c z=d
$$

determines a plane π perpendicular to the vector $\mathbf{n}=(a, b, c)$. The vector form of the equation is

$$
\mathbf{n} \cdot \mathbf{v}=d
$$

where $\mathbf{v}=(x, y, z)$ represents an arbitrary point P of π.
The distance of a point P_{0} from π equals

$$
\frac{\left|\mathbf{v}_{0} \cdot \mathbf{n}-d\right|}{\|\mathbf{n}\|}=\frac{\left|a x_{0}+b y_{0}+c z_{0}-d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

where $\mathbf{v}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$, and π contains the origin iff $d=0$.
Given two planes that are not parallel, their equations

$$
\begin{array}{ll}
\pi_{1}: & a_{1} x+b_{1} y+c_{1} z=d_{1} \\
\pi_{2}: & a_{2} x+b_{2} y+c_{2} z=d_{2}
\end{array}
$$

define a linear system with ∞^{1} solutions depending on one free parameter t, and the intersection $\pi_{1} \cap \pi_{2}$ is a line r.

The line r is parallel to the cross product $\mathbf{n}_{1} \times \mathbf{n}_{2}=(\alpha, \beta, \gamma)$, and the parametric equation of r is

$$
(x, y, z)=\left(x_{0}+\alpha t, y_{0}+\beta t, z_{0}+\gamma t\right), \quad t \in \mathbb{R}
$$

where $\left(x_{0}, y_{0}, z_{0}\right)$ is any fixed point in r.

