Orthogonal matrices and quadratic forms

SUMMARY

A matrix $P \in \mathbb{R}^{n, n}$ is orthogonal if and only if its columns (or, equivalently, its rows) form an orthonormal basis of \mathbb{R}^{n}. In this case,

$$
\operatorname{det} P= \pm 1
$$

and if $n=2$ or 3 and $\operatorname{det} P=1$, then P represents a rotation.

If $S \in \mathbb{R}^{n, n}$ is symmetric, the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f(\mathbf{v})=\mathbf{v} \cdot(S \mathbf{v})$ is called a quadratic form. For example

$$
f(x, y)=\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\binom{x}{y}=a x^{2}+2 b x y+c y^{2}
$$

Diagonalizing S by a rotation matrix P, we obtain

$$
f(x, y)=\lambda_{1} X^{2}+\lambda_{2} Y^{2}
$$

where λ_{1}, λ_{2} are the eigenvalues of S and

$$
\binom{x}{y}=P\binom{X}{Y}=\binom{X \cos \theta-Y \sin \theta}{X \sin \theta+Y \cos \theta}
$$

expresses the old coordinates in terms of the new ones X, Y.

