Diagonalizing symmetric matrices 10/05

SUMMARY

A square matrix *S* is called *symmetric* if $S^T = S$.

A square matrix *P* is called *orthogonal* if $P^T P = I$.

Let $S \in \mathbb{R}^{n,n}$ be a symmetric matrix. It is a theorem that

- the roots of p(x) = det(S xI) are all *real*;
- eigenvectors v_1 , v_2 associated to *distinct* eigenvalues λ_1 , λ_2 are orthogonal: $v_1 \cdot v_2 = 0$;
- *S* is always diagonalizable.

It follows that one can choose an

- *orthonormal* basis of \mathbb{R}^n consisting of eigenvectors of *S*;
- *orthogonal* matrix P such that $P^{-1}SP = P^{T}SP$ is diagonal.