Diagonalizable matrices 09/05

SUMMARY

Let $A, P \in \mathbb{R}^{n,n}$ be square matrices. If the columns of P are eigenvectors of A then AP = PD. If these columns are also LI,

$$P^{-1}AP = D, (1)$$

where *D* is a *diagonal* matrix with entries the eigenvalues in order. In this case, we say that *A* is *diagonalizable*.

Conversely, if (1) holds with *D* **diagonal, then the columns of** *P* **will constitute a basis of eigenvectors of** *A***.**

The matrix A will be diagonalizable if and only if

 $\dim E_{\lambda} = \operatorname{mult}(\lambda)$

for each root λ of $p(x) = \det(A - xI)$ of multiplicity > 1. Moreover, for *P* and *D* to be *real* matrices, all the roots of p(x) must be *real*.

Examples:
$$A_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

 A_1 has eigenvalues 0,0 but dim $E_0 = 1$, so P does not exist.

 A_2 has eigenvalues i, -i, so $P^{-1}DP = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ for some $P \in \mathbb{C}^{2,2}$.