Diagonalizable matrices 09/05

Summary

Let $A, P \in \mathbb{R}^{n, n}$ be square matrices. If the columns of P are eigenvectors of A then $A P=P D$. If these columns are also LI,

$$
\begin{equation*}
P^{-1} A P=D, \tag{1}
\end{equation*}
$$

where D is a diagonal matrix with entries the eigenvalues in order. In this case, we say that A is diagonalizable.

Conversely, if (1) holds with D diagonal, then the columns of P will constitute a basis of eigenvectors of A.

The matrix A will be diagonalizable if and only if

$$
\operatorname{dim} E_{\lambda}=\operatorname{mult}(\lambda)
$$

for each root λ of $p(x)=\operatorname{det}(A-x I)$ of multiplicity >1. Moreover, for P and D to be real matrices, all the roots of $p(x)$ must be real.

Examples: $A_{1}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), A_{2}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
A_{1} has eigenvalues 0,0 but $\operatorname{dim} E_{0}=1$, so P does not exist.
$A_{\mathbf{2}}$ has eigenvalues $i,-i$, so $P^{-1} D P=\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$ for some $P \in \mathbb{C}^{2,2}$.

