Powers of square matrices

SUMMARY

A square matrix $A \in \mathbb{R}^{n,n}$ is *diagonal* if $i \neq j \Rightarrow a_{ij} = 0$. A particular case is the *identity matrix* I_n with entries δ_{ij} (meaning 1 if i = j, and 0 otherwise).

If $B \in \mathbb{R}^{m,n}$ then $I_m B = B = BI_n$.

If $A, B, C \in \mathbb{R}^{n,n}$ then both AB and BA are defined in $\mathbb{R}^{n,n}$, but they are not in general equal. Matrix addition and multiplication are both *associative*:

$$(A + B) + C = A + (B + C),$$
 $(AB)C = A(BC).$

The second formula is not straightforward.

If m, n are positive integers then A^m and A^n are defined in the obvious way ($A^1 = A, A^2 = AA, \dots$ etc), and

$$A^{m+n} = A^m A^n = A^n A^m.$$

This remains true if one or both of m, n is 0 once we define A^0 to be the identity matrix. We can extend it further by the

Definition. Given $A \in \mathbb{R}^{n,n}$, its *inverse* is a matrix denoted A^{-1} (if it exists) such that $AA^{-1} = I = A^{-1}A$.

A 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible if and only if $ad-bc \neq 0$, in which case

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

The condition ad-bc is equivalent to asserting that there is a *linear relation*

$$a \begin{pmatrix} b \\ d \end{pmatrix} - b \begin{pmatrix} a \\ c \end{pmatrix} = 0$$

between the columns of A (and a similar one between rows).