SUMMARY

A square matrix $A \in \mathbb{R}^{n, n}$ is diagonal if $i \neq j \Rightarrow a_{i j}=0$.
A particular case is the identity matrix I_{n} with entries $\delta_{i j}$ (meaning 1 if $i=j$, and 0 otherwise).

If $B \in \mathbb{R}^{m, n}$ then $I_{m} B=B=B I_{n}$.
If $A, B, C \in \mathbb{R}^{n, n}$ then both $A B$ and $B A$ are defined in $\mathbb{R}^{n, n}$, but they are not in general equal. Matrix addition and multiplication are both associative:

$$
(A+B)+C=A+(B+C), \quad(A B) C=A(B C) .
$$

The second formula is not straightforward.
If m, n are positive integers then A^{m} and A^{n} are defined in the obvious way ($A^{1}=A, A^{2}=A A, \ldots$ etc), and

$$
A^{m+n}=A^{m} A^{n}=A^{n} A^{m} .
$$

This remains true if one or both of m, n is 0 once we define A^{0} to be the identity matrix. We can extend it further by the

Definition. Given $A \in \mathbb{R}^{n, n}$, its inverse is a matrix denoted A^{-1} (if it exists) such that $A A^{-1}=I=A^{-1} A$.

A 2×2 matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if $a d-b c \neq 0$, in which case

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

The condition $a d-b c$ is equivalent to asserting that there is a linear relation

$$
a\binom{b}{d}-b\binom{a}{c}=0
$$

between the columns of A (and a similar one between rows).

