SUMMARY

Let A be a square matrix. If λ is a root of the characteristic polynomial $p(x)=\operatorname{det}(A-x I)$, the associated eigenspace is

$$
E_{\lambda}=\operatorname{Ker}(A-\lambda I) .
$$

Its dimension equals $n-r(A-\lambda I)$, and is no greater than the multiplicity of λ as a root of $p(x)$.

One can find the eigenvectors associated to λ, and a basis of E_{λ}, by row-reducing $A-\lambda I$ so as to solve the homogeneous linear system $(A-\lambda I) \mathbf{v}=\mathbf{0}$.

If $A \in \mathbb{R}^{n, n}$ has n distinct real eigenvalues then the associated eigenvectors are LI and therefore form a basis of \mathbb{R}^{n}. But this can happen in other cases; for example, when A is a multiple of the identity matrix, any basis of \mathbb{R}^{n} consists of eigenvectors.

It is known that if, more generally, $A \in \mathbb{R}^{n, n}$ is symmetric then the roots of $p(x)$ are all real, and there is a basis of eigenvectors.

