SUMMARY

Let A be a square matrix. If λ is a root of the characteristic polynomial $p(x) = \det(A - xI)$, the associated *eigenspace* is

$$E_{\lambda} = \operatorname{Ker}(A - \lambda I)$$
.

Its dimension equals $n - r(A - \lambda I)$, and is no greater than the *multiplicity* of λ as a root of p(x).

One can find the eigenvectors associated to λ , and a basis of E_{λ} , by row-reducing $A - \lambda I$ so as to solve the homogeneous linear system $(A - \lambda I)\mathbf{v} = \mathbf{0}$.

If $A \in \mathbb{R}^{n,n}$ has n distinct real eigenvalues then the associated eigenvectors are LI and therefore form a basis of \mathbb{R}^n . But this can happen in other cases; for example, when A is a multiple of the identity matrix, any basis of \mathbb{R}^n consists of eigenvectors.

It is known that if, more generally, $A \in \mathbb{R}^{n,n}$ is symmetric then the roots of p(x) are all real, and there is a basis of eigenvectors.