Summary

Given an endomorphism $f: V \rightarrow V$, we seek elements \mathbf{v} of the vector space V such that

$$
f(\mathbf{v})=\lambda \mathbf{v}, \quad \lambda \in F .
$$

Such a \mathbf{v} called an eigenvector of f, and the scalar λ the associated eigenvalue. (Note that $\mathbf{v} \neq 0$, but λ could be 0 .)

An example of a linear map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that always has an eigenvector with eigenvalue $\lambda=1$ is a rotation about the origin.

If $V=\mathbb{R}^{n, 1}$ consists of column vectors, and f is represented by a square matrix $A \in \mathbb{R}^{n, n}$, the equation becomes

$$
A \mathbf{v}=\lambda \mathbf{v} \quad \text { or } \quad(A-\lambda I) \mathbf{v}=\mathbf{0} .
$$

So \mathbf{v} is an eigenvector of A if and only if $\mathbf{v} \in \operatorname{Ker}(A-\lambda I)$.
It follows that the possible eigenvalues are the roots of the characteristic polynomial

$$
p(x)=\operatorname{det}(A-x I)=(-1)^{n} x^{n}+\cdots
$$

Having found a root λ, the associated eigenvectors are the non-zero solutions $\mathbf{v}=X$ of the homogeneous linear system

$$
(A-\lambda I) X=\mathbf{0} .
$$

