The sum of two subspaces

SUMMARY

Let W be a vector space. A subspace of W is defined as for \mathbb{R}^{n} :
(S1) $\mathbf{u}, \mathbf{v} \in S \Rightarrow \mathbf{u}+\mathbf{v} \in S$;
(S2) $a \in F, \mathbf{v} \in S \Rightarrow a \mathbf{v} \in S$.
Any subspace must contain the zero vector 0 .
Examples of subspaces: Let $f: V \rightarrow W$ be a linear mapping.

- $\operatorname{Ker} f$ is a subspace of V;
- $\operatorname{Im} f$ is a subspace of W.

Their dimensions satisfy $\operatorname{dim} V=\operatorname{dim}(\operatorname{Ker} f)+\operatorname{dim}(\operatorname{Im} f)$.
Now let U, V be subspaces of a vector space W.

- Their intersection $U \cap V$ is always subspace, possibly $\{0\}$.
- The union $U \cup V$ is only a subspace if it equals U or V. The smallest subspace of W containing $U \cup V$ equals

$$
\{\mathbf{u}+\mathbf{v}: \mathbf{u} \in U \text { and } \mathbf{v} \in V\}
$$

and is denoted $U+V$. It is called the sum of U and V, and is the subspace 'generated' by U and V.

If $U=\mathscr{L}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ and $V=\mathscr{L}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ then

$$
U+V=\mathscr{L}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}
$$

but these $m+n$ elements may not be LI, even if separately they are. In fact, $\operatorname{dim}(U+V)=\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim}(U \cap V)$.

