SUMMARY

Let V be a vector space with a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$. Any linear mapping $f: V \rightarrow W$ is determined by the n vectors

$$
f\left(\mathbf{v}_{1}\right), \ldots, f\left(\mathbf{v}_{n}\right) \in W
$$

If W has a basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$ we can write

$$
f\left(\mathbf{v}_{j}\right)=a_{1 j} \mathbf{w}_{1}+\cdots+a_{m j} \mathbf{w}_{m}=\sum_{i=1}^{m} a_{i j} \mathbf{w}_{i}
$$

The coefficients determine the j th column of the matrix A associated to the linear mapping f.

Let $f: V \rightarrow W$ be linear mapping between two vector spaces. Then $\operatorname{Ker} f$ is a subspace of V and $\operatorname{Im} f$ is a subspace of W.

Rank-nullity theorem: $\operatorname{dim} V=\operatorname{dim}(\operatorname{Ker} f)+\operatorname{dim}(\operatorname{Im} f)$.
To prove this, we choose bases and convert f into a matrix $A \in \mathbb{R}^{m, n}$. We may then pretend that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is given by $f(X)=A X$.

We know that $\operatorname{Ker} f=\operatorname{Ker} A$ has dimension $n-r$ where $r=\operatorname{rank} A$. But $\operatorname{Im} f=\operatorname{Col} A$ is the subspace of \mathbb{R}^{m} spanned by the columns of A, and has dimension r.

