SUMMARY

Let V be a vector space with a basis $\{v_1, \dots, v_n\}$. Any linear mapping $f: V \to W$ is determined by the n vectors

$$f(\mathbf{v}_1), \ldots, f(\mathbf{v}_n) \in W.$$

If W has a basis $\{\mathbf{w}_1, \dots, \mathbf{w}_m\}$ we can write

$$f(\mathbf{v}_j) = a_{1j}\mathbf{w}_1 + \cdots + a_{mj}\mathbf{w}_m = \sum_{i=1}^m a_{ij}\mathbf{w}_i.$$

The coefficients determine the jth column of the matrix A associated to the linear mapping f.

Let $f: V \to W$ be linear mapping between two vector spaces. Then $\operatorname{Ker} f$ is a subspace of V and $\operatorname{Im} f$ is a subspace of W.

Rank-nullity theorem: $\dim V = \dim(\operatorname{Ker} f) + \dim(\operatorname{Im} f)$.

To prove this, we choose bases and convert f into a matrix $A \in \mathbb{R}^{m,n}$. We may then pretend that $f: \mathbb{R}^n \to \mathbb{R}^m$ is given by f(X) = AX.

We know that $\operatorname{Ker} f = \operatorname{Ker} A$ has dimension n - r where $r = \operatorname{rank} A$. But $\operatorname{Im} f = \operatorname{Col} A$ is the subspace of \mathbb{R}^m spanned by the *columns* of A, and has dimension r.