Bases and linear maps

SUMMARY

Let *V* be a vector space of dimension *n*, so it has a basis $\{v_1, \ldots, v_n\}$. We know that there exists an isomorphism

 $\mathbb{R}^n \longleftrightarrow V$

that allows us to regard vectors in V as rows of a matrix with n columns, and prove the

Theorem.

(i) If *m* vectors are LI in *V* then $m \le n$.

(ii) If *p* vectors span *V* then $p \ge n$.

In particular, any basis of V has n elements and it is enough to check one of the two conditions.

Let $\{e_1, \ldots, e_n\}$ be the canonical basis of $\mathbb{R}^{n,1}$. If f is the linear mapping defined by a matrix $A \in \mathbb{R}^{m,n}$ then $f(e_1)$ is determined by the first column Ae_1 of A, and so on.

Conversely, given *any* linear mapping $g: V \to W$ between vector spaces, we shall use the images $g(\mathbf{v}_j)$ of elements of a basis $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ of V to construct column-by-column a matrix B representing g.