SUMMARY

Let V be a vector space of dimension n, so it has a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$. We know that there exists an isomorphism

$$
\mathbb{R}^{n} \longleftrightarrow V
$$

that allows us to regard vectors in V as rows of a matrix with n columns, and prove the

Theorem.
(i) If m vectors are LI in V then $m \leqslant n$.
(ii) If p vectors span V then $p \geqslant n$.

In particular, any basis of V has n elements and it is enough to check one of the two conditions.

Let $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ be the canonical basis of $\mathbb{R}^{n, 1}$. If f is the linear mapping defined by a matrix $A \in \mathbb{R}^{m, n}$ then $f\left(\mathbf{e}_{1}\right)$ is determined by the first column $A \mathbf{e}_{1}$ of A, and so on.

Conversely, given any linear mapping $g: V \rightarrow W$ between vector spaces, we shall use the images $g\left(\mathbf{v}_{j}\right)$ of elements of a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of V to construct column-by-column a matrix B representing g.

