SUMMARY

Any matrix $A \in \mathbb{R}^{m,n}$ defines a linear mapping

$$f: \mathbb{R}^{n,1} \longrightarrow \mathbb{R}^{m,1}$$

between spaces of column vectors by setting f(X) = AX. We can regard f as a 'function' from \mathbb{R}^n to \mathbb{R}^m . For example, when m = n = 2, we obtain

$$f(x,y) = (ax + by, cx + dy).$$

Any linear mapping $f: V \to W$ between vector spaces has the property f(0) = 0. Its *kernel*

$$\ker f = {\mathbf{v} \in V : f(\mathbf{v}) = \mathbf{0}} = f^{-1}(\mathbf{0})$$

is actually a subspace of V and equals $\{0\}$ iff f is injective. When f is defined by a matrix A as above, $\ker f = \ker A$ is the space of solutions of the associated homogeneous linear system AX = 0.

If $\{v_1, \dots, v_n\}$ is a basis of V then the *linear* mapping

$$f: \mathbb{R}^n \longrightarrow V$$

$$(a_1,\ldots,a_n) \mapsto a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n$$

is both *sur*jective (B1) and *in*jective (B2). It is an *isomorphism* that can be used to treat V as the *same* vector space as \mathbb{R}^n with respect to the chosen basis.