Linear mappings

SUMMARY

Any matrix $A \in \mathbb{R}^{m, n}$ defines a linear mapping

$$
f: \mathbb{R}^{n, 1} \longrightarrow \mathbb{R}^{m, 1}
$$

between spaces of column vectors by setting $f(X)=A X$. We can regard f as a 'function' from \mathbb{R}^{n} to \mathbb{R}^{m}. For example, when $m=n=2$, we obtain

$$
f(x, y)=(a x+b y, c x+d y)
$$

Any linear mapping $f: V \rightarrow W$ between vector spaces has the property $f(0)=0$. Its kernel

$$
\operatorname{ker} f=\{\mathbf{v} \in V: f(\mathbf{v})=\mathbf{0}\}=f^{-1}(\mathbf{0})
$$

is actually a subspace of V and equals $\{0\}$ iff f is injective. When f is defined by a matrix A as above, $\operatorname{ker} f=\operatorname{ker} A$ is the space of solutions of the associated homogeneous linear system $A X=0$.

If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V then the linear mapping

$$
\begin{array}{cccc}
f: & \mathbb{R}^{n} & \longrightarrow & V \\
& \left(a_{1}, \ldots, a_{n}\right) & \mapsto & a_{1} \mathbf{v}_{1}+\cdots+a_{n} \mathbf{v}_{n}
\end{array}
$$

is both surjective (B1) and injective (B2). It is an isomorphism that can be used to treat V as the same vector space as \mathbb{R}^{n} with respect to the chosen basis.

