SUMMARY

A vector space V is finite-dimensional if there exist $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ such that $V=\mathscr{L}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$. If this is true we can extract a (possibly smaller) set

$$
\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} \subseteq \mathscr{L}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}
$$

whose elements are LI and therefore form a basis of V. Any other basis will have n elements, and $\operatorname{dim} V=n$.

If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V then every element of V can be written uniquely as a LC

$$
\mathbf{v}=a_{1} \mathbf{v}_{1}+\ldots+a_{n} \mathbf{v}_{n}, \quad a_{i} \in F
$$

and the scalars a_{1}, \ldots, a_{n} are called the components of \mathbf{v} with respect to the basis.

Any subspace of V (a subset closed under addition and scalar multiplication) is a vector space in its own right. For example $V=\mathbb{R}^{n, n}$ is a vector space of dimension n^{2} whilst the set S of symmetric $n \times n$ matrices is a subspace of dimension $\frac{1}{2} n(n+1)$.

Definition. Given two vector spaces V, W with the same field F, a mapping $f: V \rightarrow W$ is called linear if
(LM1) $f(\mathbf{u}+\mathbf{v})=f(\mathbf{u})+f(\mathbf{v})$
(LM2) $f(a \mathbf{v})=a f(\mathbf{v})$
for all $\mathbf{u}, \mathbf{v} \in V$ and $a \in F$.
We shall first use such mappings to identify different vector spaces of the same dimension.

