A VECTOR SPACE consists of

- a set or space V of 'vectors’ (arrows, forces, columns, rows, matrices, polynomials, functions...) including 0
- a set or field F of scalars (usually $F=\mathbb{R}$ in this course) including 0 and 1
such that one can
- add two vectors: $\mathbf{u}, \mathbf{v} \in V \Rightarrow \mathbf{u}+\mathbf{v} \in V$
- multiply a vector by a scalar: $a \in F, \mathbf{v} \in V \Rightarrow a \mathbf{v} \in V$ with the following rules:

$$
\mathbf{V} \quad \begin{aligned}
(\mathbf{u}+\mathbf{v})+\mathbf{w} & =\mathbf{u}+(\mathbf{v}+\mathbf{w}) \\
\mathbf{u}+\mathbf{v} & =\mathbf{v}+\mathbf{u} \\
\mathbf{0}+\mathbf{v} & =\mathbf{v}
\end{aligned}
$$

$$
\mathbf{F V} \begin{gathered}
(a+b) \mathbf{v}=a \mathbf{v}+b \mathbf{v} \\
(a b) \mathbf{v}=a(b \mathbf{v}) \\
a(\mathbf{u}+\mathbf{v})=a \mathbf{u}+a \mathbf{v}
\end{gathered}
$$

$$
\begin{aligned}
a(\mathbf{u}+\mathbf{v}) & =a \mathbf{u}+a \mathbf{v} \quad \text { for all } a, b \in F, \mathbf{u}, \mathbf{v} \in V \\
1 \mathbf{v} & =\mathbf{v} \\
0 \mathbf{v} & =\mathbf{0}
\end{aligned}
$$

Elements of F (if not \mathbb{R}) must obey similar rules:

\mathbf{F}| $(a+b)+c$ | $=a+(b+c)$ | $(a b) c$ | $=a(b c)$ |
| ---: | :--- | ---: | :--- |
| $a+b$ | $=b+a$ | $a b$ | $=b a$ |
| $0 a$ | $=0$ | $1 a$ | $=a$ |
| $a b^{-1}$ | $=a / b$ | exists | if $b \neq 0$ |

Alternative fields include $\mathbb{C}, \mathbb{Q}, B=\mathbb{F}_{2}, \mathbb{F}_{p^{k}}$

EXAMPLES of real vector spaces
$F=\mathbb{R}$ and V is one of:

- the set \mathbb{R}^{n} of vectors with n components
- more precisely, $\mathbb{R}^{1, n}$ or $\mathbb{R}^{n, 1}$
- any subspace of these spaces, as previously defined
- the set $\mathbb{R}^{m, n}$ of $m \times n$ matrices
- the set $\mathbb{R}[x]$ of polnomials with real coefficients
- the set $\mathbb{R}_{d}[x]$ of such polynomials with degree $\leqslant d$.

The spaces $\mathbb{R}^{m, n}$ and $\mathbb{R}^{1, m n}$ share the same operations of addition and scalar multiplication once their elements are identified (but there are many valid choices).

We can try to define a finite basis of a vector space using (B1),(B2) as before. The dimension of a vector space is the number of elements in any such basis, and can be shown not to depend on the choice of basis.

The space $\mathbb{R}^{m, n}$ has dimension $m n$.

We can define a subspace of any vector space V using (S1), (S2) as before.
$V=\mathbb{R}[x]$ does not have finite dimension, but $\mathbb{R}_{d}[x]$ is a subspace of V of dimension $d+1$.

