SUMMARY

A second way to define subspaces is via equations: the set of solutions X of any homogeneous linear system $A X=\mathbf{0}$ is a subspace. We can add solutions to get to new solutions, and multiply them by scalars.

Example. Let

$$
\begin{aligned}
V & =\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3}: x+y+z=0\right\} \\
& =\mathscr{L}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}, \quad \mathbf{u}_{1}=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

The set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is one of many bases of V :
Definition. Given a subspace V of \mathbb{R}^{n}, a basis is a set of linearly independent vectors $\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}$ that generate V in the sense that

$$
V=\mathscr{L}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\} .
$$

We shall see that any two bases have the same number of elements, called the dimension of the subspace V.

