Matrix addition and multiplication 14/03

Summary

$\mathbb{R}^{m, n}$ is the set of matrices (arrays) of size $m \times n$.
Any matrix $A \in \mathbb{R}^{m, n}$ contains $m n$ entries $a_{i j} \in \mathbb{R}$.
If $A, B \in \mathbb{R}^{m, n}$, their sum $A+B$ is defined by adding the entries in corresponding positions.

If $A \in \mathbb{R}^{m, n}$ and $\lambda \in \mathbb{R}$, to compute the product λA the number λ must multiply every element of A.

Example of special matrices:

$$
\left(\begin{array}{llll}
1 & 0 & -5 & 8
\end{array}\right) \in \mathbb{R}^{1,4}, \quad\left(\begin{array}{c}
1 \\
0 \\
-5 \\
8
\end{array}\right) \in \mathbb{R}^{4,1}
$$

Both represent the vector $(1,0,-5,8) \in \mathbb{R}^{4}$.
They are related by the operation of transpose

$$
\left(\begin{array}{llll}
1 & 0 & -5 & 8
\end{array}\right)^{\mathrm{T}}=\left(\begin{array}{c}
1 \\
0 \\
-5 \\
8
\end{array}\right) \text {. }
$$

A matrix A is said to be symmetric if $A=A^{\mathrm{T}}$. Examples:

$$
\left(\begin{array}{ll}
1 & 8 \\
8 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -7
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

The third is the 'identity matrix', the last the 'zero matrix'.

One can define the 'dot product' between any two vectors of the same 'length'. If

$$
\mathbf{r}=\left(\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right), \quad \mathbf{c}=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)
$$

then

$$
\mathbf{r} \cdot \mathbf{c}=a_{1} b_{2}+\cdots+a_{n} b_{n}=\sum_{i=1}^{n} a_{i} b_{i} .
$$

Given matrices $A \in \mathbb{R}^{m, n}$ e $B \in \mathbb{R}^{n, p}$, let
$\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}$ be the rows of $A, \quad \mathbf{c}_{1}, \ldots, \mathbf{c}_{p}$ the columns of B. Then

$$
A B=\left(\mathbf{r}_{i} \cdot \mathbf{c}_{j}\right) \in \mathbb{R}^{m, p}
$$

is the matrix whose entry in row i and column j is $\mathbf{r}_{i} \cdot \mathbf{c}_{j}$. In particular, the matrix product rc is the 1×1 matrix with entry r-c.

