1. The matrix $\frac{1}{\sqrt{2}}\left(\begin{array}{cc}-1 & -1 \\ 1 & -1\end{array}\right)$ represents a rotation of the $x y$ axes by an angle of
(a) $\pi / 4$,
(b) $\pi / 2$,
(c) $3 \pi / 4$,
(d) π,
(e) $5 \pi / 4$.
2. The inverse of the matrix $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ is
(a) itself,
(b) $\left(\begin{array}{ccc}1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)$,
(c) $\left(\begin{array}{ccc}1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$,
(d) $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)$,
(e) none of the above.
3. Consider, in \mathbb{R}^{4}, the subspaces

$$
V=\mathscr{L}\{(1,2,1,0),(2,1,0,1)\}, \quad W=\mathscr{L}\{(0,3,2,-5),(1,-1,-1,1)\}
$$

Their sum $V+W$ is a subspace of dimension
(a) 4,
(b) 3,
(c) 2,
(d) 1,
(e) 0 .
4. A linear mapping $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is defined by $f(x, y, z)=(x+z, 2 y, x+y+z)$. Then
(a) there exists a non-zero vector $\mathbf{v}=(x, y, z)$ such that $f(\mathbf{v})=\mathbf{v}$,
(b) f is bijective,
(c) $f^{-1}(0)=\{0\}$,
(d) $f^{-1}(0)$ is infinite.
(e) none of the above.
5. The matrix $\left(\begin{array}{lll}0 & a & c \\ 0 & 0 & b \\ 0 & 0 & 1\end{array}\right)$ is diagonalizable if and only if
(a) $a=0$,
(b) $b=0$,
(c) $c=0$,
(d) $a=b=c=0$,
(e) none of the above.
6. The two lines

$$
r_{1}:\left\{\begin{array}{l}
x+y+z=1 \\
x+2 y+3 z=1,
\end{array} \quad r_{2}:(x, y, z)=(t+1,1-2 t, t), \quad t \in \mathbb{R}\right.
$$

(a) meet in one point,
(b) are parallel,
(c) are orthogonal,
(d) are skew,
(e) none of the above.

A Let $A=\left(\begin{array}{rrr}-2 & 2 & 3 \\ 2 & -5 & 2 \\ 4 & 2 & -1\end{array}\right)$.
(a) Show that

$$
\mathbf{v}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{l}
7 \\
4 \\
9
\end{array}\right)
$$

are both eigenvectors of A. [Multiply each in turn by A.] What are their associated eigenvalues?
(b) What does your answer to part (a) tell you about the characteristic polynomial $p(x)$ of A ? Determine $p(x)$ completely, or say what its roots are. [Recall that the sum of the roots is the trace of A.]
(c) Find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. Write down the determinant of D and of A.

Solution:

B Consider the matrix and column vectors

$$
A=\left(\begin{array}{cccc}
1 & -1 & 0 & -2 \\
1 & 0 & 1 & 1 \\
1 & 1 & 4 & 0 \\
0 & 2 & 5 & 0
\end{array}\right), \quad X=\left(\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right), \quad B=\left(\begin{array}{c}
3 \\
2 \\
1 \\
-2
\end{array}\right)
$$

(a) Row reduce the augmented matrix $(A \mid B)$, and hence find all solutions of the linear system $A X=B$.
(b) Using your answer to part (a), write down the dimensions of the kernel and image of the linear mapping $\mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ associated to A.
(c) Using your answer to (a), find a non-zero column vector X such that $A X=\mathbf{0}$, and describe the kernel of A.
(d) Using your answer to (c), find all solutions X to the equation $A X=A B$.

Solution:

C Let $\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)$. Attempt the following short questions:
(a) Describe the set of points (x, y, z) is space for which the corresponding vector $\mathbf{v}=(x, y, z)$ satisfies $\mathbf{v} \cdot \mathbf{i}=1$.
(b) Describe the set of points (x, y, z) in space for which $\mathbf{v}=(x, y, z)$ satisfies the equation $\mathbf{v} \times \mathbf{j}=\mathbf{k}$.
(c) Decide whether the three vectors $\mathbf{j}+\mathbf{k}, 2 \mathbf{i}+3 \mathbf{j}+5 \mathbf{k}, 8 \mathbf{i}+13 \mathbf{j}+21 \mathbf{k}$ are linearly independent.
(d) Show that the set of points (x, y) in the plane satisfying the equation

$$
(x \mathbf{i}-2 y \mathbf{j}) \times((2 x+y) \mathbf{i}+3 x \mathbf{j})=\mathbf{k}
$$

is a conic, and say whether it is an ellipse, hyperbola or something else.
[Recall that:
the scalar product of two vectors $(a, b, c) \cdot(x, y, z)$ of two vectors equals $a x+b y+c z$; the cross product $(a, b, c) \times(x, y, z)$ of two vectors equals $(b z-c y, c x-a z, a y-b x)$.]

Solution:

