1. Consider the two lines defined parametrically by $r_{1}:(x, y, z)=(s+1, s,-s)$ and $r_{2}:(x, y, z)=(t, t, t)$. Then
(a) the directions of r_{1} and r_{2} are orthogonal,
(b) r_{1} and r_{2} are parallel,
(c) r_{1} and r_{2} are skew,
(d) $\quad r_{1}$ and r_{2} meet in one point.
2. Consider the function $f(x, y)=e^{x^{2}+y^{2}-1}$. Then
(a) f has no critical points,
(b) the tangent plane to the graph of f at $(x, y)=(0,0)$ is $z=e^{-1}+x+y$,
(c) f has a saddle point at $(x, y)=(0,0)$,
(d) f has a minimum at $(x, y)=(0,0)$.
3. Consider the sphere \mathscr{S} with equation $x^{2}+y^{2}+z^{2}+2 x+2 y+2 z=0$. Let r be its radius and C its centre. Then
(a) $r=1$,
(b) r equals the distance of C from the plane $x+y+x=0$,
(c) $C=(1,1,1)$,
(d) $C=(0,0,0)$.
4. Consider the linear mapping $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ with $f(x, y, z, t)=(x-y+t, x+t)$. Then
(a) the matrix associated to f has 4 rows and 2 columns,
(b) f is surjective,
(c) the image of f has dimension 1 ,
(d) the kernel of f has dimension 1 .
5. Let π be the plane that passes through $(1,1,1)$ perpendicular to $\mathbf{i}+\mathbf{j}+\mathbf{k}$. Then
(a) the line $(x, y, z)=(t, 0,-t)$ is parallel to π,
(b) the line $(x, y, z)=(t, 0,-t)$ intersects π,
(c) the line $(x, y, z)=(t, t, t)$ is parallel to π,
(d) $(1,0,-1)$ lies on π.
6. Consider the curve $\gamma(t)=(\cos t, \sin t, t)$. The arc length from $t=0$ to $t=2 \pi$ (one twist of the helix) equals
(a) 2π,
(b) 3π,
(c) $2 \pi \sqrt{2}$,
(d) $2 \pi+3$.
7. Let $f(x, y, z)=x^{2}+2 y+z$. Let $\widehat{\nabla F}=(\nabla F)(1,1,1)$ and let \mathbf{v} be a unit vector (so $\|\mathbf{v}\|=1$). The directional derivative $\mathbf{v} \cdot \widehat{\nabla F}$ has its greatest value when
(a) $\mathbf{v}=\frac{1}{3}(2,2,1)$,
(b) $\mathbf{v}=(1,0,0)$,
(c) $\mathbf{v}=\frac{1}{\sqrt{3}}(1,1,1)$,
(d) $\mathbf{v}=(0,0,1)$.
8. Consider the quadric \mathscr{Q} in \mathbb{R}^{3} with equation $z^{2}=x y$. Then
(a) \mathscr{Q} is a hyperbolic paraboloid,
(b) \mathscr{Q} is a cone,
(c) \mathscr{Q} is a hyperboloid of one sheet,
(d) \mathscr{Q} is a hyperboloid of two sheets.
9. Consider the matrices $A=\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right), B=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$ and $C=A B \in \mathbb{R}^{3,3}$. Then
(a) C is symmetric,
(b) the trace of C is positive,
(c) C^{2} is the zero matrix,
(d) $\operatorname{det} C$ is negative.
10. Let $A \in \mathbb{R}^{3,4}$ be a matrix (with 3 rows and 4 columns) of rank 3 , and let $X \in \mathbb{R}^{4,1}$ be a column vector. Then
(a) the linear system $A X=B$ always has a unique solution,
(b) there exists B such that $A X=B$ has no solutions,
(c) solutions of the homogeneous system $A X=\mathbf{0}$ have 2 free parameters,
(d) the linear system $A X=B$ always has infinitely many solutions.
11. Consider the column vectors $\mathbf{v}_{1}=\left(\begin{array}{c}3 \\ 1 \\ -4\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{l}7 \\ 1 \\ 1\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{c}1 \\ -1 \\ 9\end{array}\right)$. Then n. $\mathbf{v}_{1} \times \mathbf{v}_{2}$ and \mathbf{v}_{3} are parallel.
(a) $\mathbf{v}_{1} \times \mathbf{v}_{2}$ and \mathbf{v}_{3} are parallel,
(b) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis of \mathbb{R}^{3},
(c) the triple product $\left(\mathbf{v}_{1} \times \mathbf{v}_{2}\right) \cdot \mathbf{v}_{3}$ is zero,
(d) $\mathbf{v}_{1}+\mathbf{v}_{2}$ is orthogonal to \mathbf{v}_{3}.
12. Consider the conic $\mathscr{C}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}-3 x y+8 y^{2}=4\right\}$ in the plane. Then
(a) \mathscr{C} is an ellipse,
(b) \mathscr{C} is a hyperbola,
(c) \mathscr{C} consists of two intersecting lines,
(d) \mathscr{C} is the union of two parallel lines.

A Consider the following two subspaces of \mathbb{R}^{3} :

$$
\begin{aligned}
U & =\mathscr{L}\{(1,0,2,3),(1,-6,6,5),(2,3,2,5)\} \\
V & =\mathscr{L}\{(1,-2,2,3),(1,-3,4,4),(2,-1,-2,3)\}
\end{aligned}
$$

(i) Find the dimension of U.
(ii) Determine the dimension of V, and write down a basis of V.

Now consider the subspace $U+V$ generated by all six vectors.
(iii) Determine the dimension of $U+V$.
(iv) Deduce (with a brief explanation) that $\operatorname{dim}(U \cap V)=1$.

B Consider the matrix

$$
A=\left(\begin{array}{cc}
3 & 4 \\
4 & 18
\end{array}\right)
$$

(i) Find the eigenvalues of A.
(ii) Find two linearly independent eigenvectors of A.
(iii) Find an orthogonal matrix P and a diagonal matrix D such that $P^{-1} A P=D$. (There is no need to verify this equation.)
(iv) Let P^{T} denote the transpose of P. Explain why $A=P D P^{T}$ and also $A^{5}=P D^{5} P^{T}$. (It is not necessary to multiply the matrices numerically!)

C Consider the functions

$$
f(x, y)=x^{3}+y^{3}-x y, \quad F(x, y, z)=z-f(x, y)
$$

so that the graph of f is the surface $F=0$.
(i) Compute the gradient of f, and also the gradient of F.
(ii) Verify that $F(1,1,1)=0$ and write down the equation of the tangent plane to the graph of f at $(1,1,1)$.
(iii) Find the critical points of f (showing your working). Classify the type of each critical point (minimum/maximum/saddle).

Now let $\gamma:[0,1] \rightarrow \mathbb{R}^{3}$ be the line segment with $\gamma(t)=(0,1,2 t)$.
(iv) Find $\left\|\gamma^{\prime}(t)\right\|$ and compute the line integral $\int_{\gamma} F$.

