- 1. Consider the two lines defined parametrically by r_1 : (x, y, z) = (s+1, s, -s) and r_2 : (x, y, z) = (t, t, t). Then
 - (a) the directions of r_1 and r_2 are orthogonal,
 - (b) r_1 and r_2 are parallel,
 - (c) r_1 and r_2 are skew,
 - (d) r_1 and r_2 meet in one point.
- 2. Consider the function $f(x, y) = e^{x^2 + y^2 1}$. Then
 - (a) *f* has no critical points,
 - (b) the tangent plane to the graph of f at (x, y) = (0, 0) is $z = e^{-1} + x + y$,
 - (c) f has a saddle point at (x, y) = (0, 0),
 - (d) f has a minimum at (x, y) = (0, 0).
- 3. Consider the sphere \mathscr{S} with equation $x^2 + y^2 + z^2 + 2x + 2y + 2z = 0$. Let r be its radius and C its centre. Then
 - (a) r = 1,
 - (b) r equals the distance of C from the plane x + y + x = 0,
 - (c) C = (1, 1, 1),
 - (d) C = (0, 0, 0).
- 4. Consider the linear mapping $f: \mathbb{R}^4 \to \mathbb{R}^2$ with f(x, y, z, t) = (x y + t, x + t). Then
 - (a) the matrix associated to f has 4 rows and 2 columns,
 - (b) *f* is surjective,
 - (c) the image of f has dimension 1,
 - (d) the kernel of f has dimension 1.
- 5. Let π be the plane that passes through (1,1,1) perpendicular to $\mathbf{i} + \mathbf{j} + \mathbf{k}$. Then
 - (a) the line (x, y, z) = (t, 0, -t) is parallel to π ,
 - (b) the line (x, y, z) = (t, 0, -t) intersects π ,
 - (c) the line (x, y, z) = (t, t, t) is parallel to π ,
 - (d) (1, 0, -1) lies on π .
- 6. Consider the curve $\gamma(t) = (\cos t, \sin t, t)$. The arc length from t=0 to $t=2\pi$ (one twist of the helix) equals
 - (a) 2π ,
 - (b) 3π ,
 - (c) $2\pi\sqrt{2}$,
 - (d) $2\pi + 3$.

- 7. Let f(x, y, z) = x² + 2y + z. Let \$\overline{\nabla F}\$ = (\nabla F)(1, 1, 1) and let v be a unit vector (so ||v|| = 1). The directional derivative v · \$\overline{\nabla F}\$ has its greatest value when
 - (a) $\mathbf{v} = \frac{1}{3}(2,2,1),$
 - (b) $\mathbf{v} = (1, 0, 0),$
 - (c) $\mathbf{v} = \frac{1}{\sqrt{3}}(1, 1, 1),$
 - (d) $\mathbf{v} = (0, 0, 1).$
- 8. Consider the quadric \mathscr{Q} in \mathbb{R}^3 with equation $z^2 = xy$. Then
 - (a) \mathscr{Q} is a hyperbolic paraboloid,
 - (b) \mathscr{Q} is a cone,
 - (c) \mathscr{Q} is a hyperboloid of one sheet,
 - (d) \mathcal{Q} is a hyperboloid of two sheets.

9. Consider the matrices
$$A = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ and $C = AB \in \mathbb{R}^{3,3}$. Then

- (a) *C* is symmetric,
- (b) the trace of *C* is positive,
- (c) C^2 is the zero matrix,
- (d) $\det C$ is negative.
- 10. Let $A \in \mathbb{R}^{3,4}$ be a matrix (with 3 rows and 4 columns) of rank 3, and let $X \in \mathbb{R}^{4,1}$ be a column vector. Then
 - (a) the linear system AX = B always has a unique solution,
 - (b) there exists B such that AX = B has no solutions,
 - (c) solutions of the homogeneous system AX = 0 have 2 free parameters,
 - (d) the linear system AX = B always has infinitely many solutions.

11. Consider the column vectors
$$\mathbf{v}_1 = \begin{pmatrix} 3 \\ 1 \\ -4 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 7 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 1 \\ -1 \\ 9 \end{pmatrix}$. Then (a) $\mathbf{v}_1 \times \mathbf{v}_2$ and \mathbf{v}_3 are parallel,

- (b) $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis of \mathbb{R}^3 ,
- (c) the triple product $(\mathbf{v}_1 \times \mathbf{v}_2) \cdot \mathbf{v}_3$ is zero,
- (d) $\mathbf{v}_1 + \mathbf{v}_2$ is orthogonal to \mathbf{v}_3 .

12. Consider the conic $\mathscr{C} = \{(x, y) \in \mathbb{R}^2 : x^2 - 3xy + 8y^2 = 4\}$ in the plane. Then

- (a) *C* is an ellipse,
- (b) \mathscr{C} is a hyperbola,
- (c) *C* consists of two intersecting lines,
- (d) \mathscr{C} is the union of two parallel lines.

A Consider the following two subspaces of \mathbb{R}^3 :

$$U = \mathscr{L}\{(1, 0, 2, 3), (1, -6, 6, 5), (2, 3, 2, 5)\}$$
$$V = \mathscr{L}\{(1, -2, 2, 3), (1, -3, 4, 4), (2, -1, -2, 3)\}.$$

- (i) Find the dimension of *U*.
- (ii) Determine the dimension of *V*, and write down a basis of *V*.

Now consider the subspace U + V generated by all six vectors.

- (iii) Determine the dimension of U + V.
- (iv) Deduce (with a brief explanation) that $\dim(U \cap V) = 1$.

B Consider the matrix

$$A = \begin{pmatrix} 3 & 4\\ 4 & 18 \end{pmatrix}.$$

- (i) Find the eigenvalues of *A*.
- (ii) Find two linearly independent eigenvectors of A.

(iii) Find an *orthogonal* matrix P and a diagonal matrix D such that $P^{-1}AP = D$. (There is no need to verify this equation.)

(iv) Let P^T denote the transpose of P. Explain why $A = PDP^T$ and also $A^5 = PD^5P^T$. (It is not necessary to multiply the matrices numerically!)

Consider the functions

C

$$f(x,y) = x^{3} + y^{3} - xy,$$
 $F(x,y,z) = z - f(x,y),$

so that the graph of f is the surface F = 0.

(i) Compute the gradient of *f*, and also the gradient of *F*.

(ii) Verify that F(1, 1, 1) = 0 and write down the equation of the tangent plane to the graph of *f* at (1, 1, 1).

(iii) Find the critical points of f (showing your working). Classify the type of each critical point (minimum/maximum/saddle).

Now let $\gamma: [0,1] \to \mathbb{R}^3$ be the line segment with $\gamma(t) = (0,1,2t)$.

(iv) Find $\|\gamma'(t)\|$ and compute the line integral $\int F$.