- 1. Consider the subset $S = \{(x, y, z) \in \mathbb{R}^3 : x + y 1 = 0 \text{ and } z = 0\}$ of \mathbb{R}^3 . Then
 - (a) *S* is a subspace of dimension 1,
 - (b) *S* is a subspace of dimension 2,
 - (c) *S* does not contain more than two linearly independent vectors,
 - (d) *S* contains a basis of \mathbb{R}^3 .

2. Consider the vectors $\mathbf{u} = \mathbf{i}$, $\mathbf{v} = \mathbf{i} + 2\mathbf{j}$, $\mathbf{w} = \mathbf{i} + \mathbf{j} + 3\mathbf{k}$ in \mathbb{R}^3 . Then

- (a) $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis of \mathbb{R}^3 ,
- (b) **w** is parallel to the cross product $\mathbf{u} \times \mathbf{v}$,
- (c) **u**, **v**, **w** are coplanar (that is, not linearly independent),
- (d) **v** is parallel to the cross product $\mathbf{u} \times \mathbf{w}$.
- 3. Consider the function of two variables f(x, y) = 1 + x + y. Then
 - (a) the point (1, 1, 1) belongs to the graph of f,
 - (b) $(\nabla f)(0,0) = (\nabla f)(1,1),$
 - (c) f is not differentiable at the origin,
 - (d) $f(x,y) \ge 1$ for all $(x,y) \in \mathbb{R}^2$.

4. Consider the matrices
$$A = \begin{pmatrix} 2 & -2 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$. Then

- (a) the rank of *BA* equals 2,
- (b) 0 is an eigenvalue of BA,
- (c) *BA* is symmetric,
- (d) *BA* is invertibile.
- 5. Let $f(x, y) = e^{x+y^2}$. Then
 - (a) the Taylor expansion to first order of f at (0,0) is x,
 - (b) the Taylor expansion to first order of f at (0,0) is $1 + x + y^2$,
 - (c) the Taylor expansion to first order of f at (0,0) is $x + y^2$,
 - (d) the Taylor expansion to first order of f at (0,0) is 1 + x.
- 6. Let \mathscr{C} be the conic with equation $-x^2 + y^2 + 2x + 3 = 0$ in the plane \mathbb{R}^2 . Then

101

- (a) *C* consists of two intersecting lines,
- (b) \mathscr{C} is a hyperbola,
- (c) $\mathscr{C} = \varnothing$ (that is, \mathscr{C} contains no real points),
- (d) \mathscr{C} is a parabola.

- 7. Let $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Then
 - (a) *N* is diagonalizable,
 - (b) the characteristic polynomial p(x) of N equals $-x^3$,
 - (c) $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is an eigenvector of *N*,
 - (d) the characteristic polynomial p(x) of N equals $x^2 + 1$.
- 8. Let \mathscr{S} be the surface parametrized by $\sigma(s, t) = (s, t, st)$. Then
 - (a) a normal vector to \mathscr{S} at (1,1,1) is (1,1,1),
 - (b) a normal vector to \mathscr{S} at (1,1,1) is (-1,-1,1),
 - (c) a normal vector to \mathscr{S} at (1,1,1) is (1,-1,1),
 - (d) a normal vector to \mathscr{S} at (1,1,1) is (-1,1,1).
- 9. Consider the vectors $\mathbf{v}_1 = (0, 1, 0, 0)$, $\mathbf{v}_2 = (0, 1, 0, 1)$, $\mathbf{v}_3 = (1, -2, 0, 2)$ in \mathbb{R}^4 . Then
 - (a) \mathscr{L} { $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ } has dimension 4,
 - (b) $\mathscr{L}{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ has dimension 2,
 - (c) $\mathbf{v}_1 \mathbf{v}_2 + 5\mathbf{v}_3 \in \mathscr{L}{\mathbf{v}_1, \mathbf{v}_2},$
 - (d) there exists \mathbf{v}_4 such that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is a basis of \mathbb{R}^4 .
- 10. Consider the quadric \mathscr{Q} with equation $x^2 + y^2 = 1$ in space \mathbb{R}^3 . Then
 - (a) \mathscr{Q} is a paraboloid,
 - (b) \mathscr{Q} has points that lie on the plane z = 1,
 - (c) \mathscr{Q} is a circle of radius 1,
 - (d) \mathscr{Q} is a cone.
- 11. Consider the linear mapping $f: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

Then

$$f(x, y, z) = (y + z, 2y + 2z, 3y + 3z).$$

- (a) the kernel Ker(f) has dimension 2,
- (b) *f* is injective,
- (c) the image Im(f) has dimension 2,
- (d) (1, 1, 1) belongs to Im(f).
- 12. Consider the curve \mathscr{C} in \mathbb{R}^3 with parametric equation $\gamma(t) = (\sin t, 2\cos t, t^2)$. Then
 - (a) *C* lies in a plane,
 - (b) there exists $t \in \mathbb{R}$ such that $\gamma'(t) = 0$,
 - (c) \mathscr{C} lies on a sphere,
 - (d) (0,2,0) belongs to \mathscr{C} .

A Consider the following two lines in space defined parametrically:

$$r_1: (x, y, z) = (2t, 3t, t)$$

$$r_2: (x, y, z) = (3s + 5, 3s, -s)$$

(i) Show that r_1 and r_2 are skew lines, and that r_1 contains (0, 0, 0).

(ii) Find the equation of the plane containing r_1 and passing through (-1, 0, 1).

(iii) Write down the equations of any two planes whose intersection is r_2 .

B Consider the matrix

$$A = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 1 & 0 \\ -1 & 0 & -1 \end{pmatrix},$$

and the linear mapping $f: \mathbb{R}^3 \to \mathbb{R}^3$ defined by f(X) = AX.

(i) Find a basis of the subspace $\operatorname{Ker} f$.

(ii) Decide whether the vector $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ belongs to Im(*f*), justifying your answer.

(iii) Say whether *A* is invertible, justifying your answer.

(iv) Determine all the eigenvalues of *A*. Say whether *A* is diagonalizable, justifying your answer.

C Consider the function of two variables

$$f(x, y) = 2y^3 + (y - x)^2 - 6x.$$

(i) Compute the gradient of *f* and show that *f* has two critical points.

(ii) Find the type (for example, local maximum, local minimum, saddle point) of each critical point.

Consider the graph of *f*, the surface \mathscr{S} with equation $z = 2y^3 + (y - x)^2 - 6x$.

(iii) Show that P = (0, 1, 3) belongs to \mathscr{S} , and find the equation of the tangent plane to \mathscr{S} at *P*.

(iv) Write down the parametric equation of the line passing through *P* in the direction of the normal vector to \mathscr{S} .