Notes 9 – Vectors in space

We shall represent points and displacements by vectors and study the scalar product.

L9.1 Cartesian coordinates. A choice of these allows us to label a point *P* in space by a triple (x, y, z). It is convenient to think of *z* as representing 'height', and (x, y) the point of the 'horizontal' plane that *P* projects to. We shall regard the corresponding column vector

$$\mathbf{v} = (x, y, z)^{\mathsf{T}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \vec{OP}$$

as the *position vector* of *P* relative to the origin O = (0, 0, 0).

A column vector should be thought of as a *displacement* in space represented by direction and length, but free to be applied at any point, not necessarily *O*. This allows us to visualize the *sum* of two column vectors $\mathbf{v} + \mathbf{w}$ as the displacement determined by the diagonal of a paralellogram with sides \mathbf{v} and \mathbf{w} .

Moreover, if $\mathbf{w} = \vec{OQ}$ then

$$\overrightarrow{OP} + \overrightarrow{PQ} = \overrightarrow{OQ} \implies \overrightarrow{PQ} = \mathbf{w} - \mathbf{v},$$

and the displacement from P to Q is represented by the *difference* of vectors, or subtraction. In coordinates,

$$\mathbf{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix},$$

and two applications of Pythagoras's theorem tell us that its length is

$$\sqrt{(\sqrt{x^2+y^2})^2+z^2} = \sqrt{x^2+y^2+z^2}.$$

This quantity is called the *norm* or *magnitude* of the vector \mathbf{v} , and denoted $||\mathbf{v}||$ or $|\mathbf{v}|$. It is the distance from *O* to *P*. Similarly, the distance from *P* to *Q* is

$$|PQ| = |\mathbf{v} - \mathbf{w}|.$$

A vector of norm 1 is said to be a *unit* vector.

L9.2 Dot or scalar product. We already defined this in order to multiply matrices. If

$$\mathbf{u} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \qquad \mathbf{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

then

$$\mathbf{u} \cdot \mathbf{v} = ax + by + cz = \mathbf{u}^{\mathsf{T}} \mathbf{v}$$

(ignoring the parentheses that are implicit in the last expression). We see immediately that

$$\mathbf{v} \cdot \mathbf{v} = x^2 + y^2 + z^2 = |\mathbf{v}|^2 \ge 0,$$

so the norm squared of \mathbf{v} is the scalar product of \mathbf{v} with itself.

The following properties are easy to verify:

(i)
$$\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$$
,
(ii) $(a\mathbf{u} + b\mathbf{v}) \cdot \mathbf{w} = a\mathbf{u} \cdot \mathbf{w} + b\mathbf{v} \cdot \mathbf{w}$. Thus,
 $|\mathbf{v} - \mathbf{w}|^2 = (\mathbf{v} - \mathbf{w}) \cdot (\mathbf{v} - \mathbf{w}) = \mathbf{v} \cdot \mathbf{v} - \mathbf{v} \cdot \mathbf{w} - \mathbf{w} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w}$
 $= |\mathbf{v}|^2 - 2\mathbf{v} \cdot \mathbf{w} + |\mathbf{w}|^2$.
(1)

We record the well-known

Definition. Let \mathbf{v}, \mathbf{w} be nonnull vectors in \mathbb{R}^3 . If they make an angle of $\pi/2$ in their common plane, we say that they are perpendicular or orthogonal. If they make an angle of 0 or π they are parallel.

In the first case, $\mathbf{v} - \mathbf{w}$ is the hypotenuse of a right-angled triangle. and its length squared is $|\mathbf{v}|^2 + |\mathbf{w}|^2$. It follows from (1) that $\mathbf{v} \cdot \mathbf{w} = 0$. Here we have used Pythagoras's theorem, which is generalized by the *Cosine Rule (Teorema di Carnot)* for triangles (equally valid in space because all the action takes place in a fixed plane). This states that

$$|PQ|^{2} = |OP|^{2} + |OQ|^{2} - 2|OP||OQ|\cos\theta,$$
(2)

where $\theta = \angle POQ$. Comparing (1) and (2) gives the

Lemma. The scalar product can be expressed by the formula

$$\mathbf{v}\cdot\mathbf{w}=|\mathbf{v}||\mathbf{w}|\cos\theta,$$

where θ is the angle between **v** and **w**.

Since $\cos \theta = \cos(-\theta)$, we do not have to worry about the order in which we choose the two vectors to measure the angle; this is consistent with (i) above.

The Lemma confirms that

Corollary. (*i*) If \mathbf{v}, \mathbf{w} are both nonzero then $\mathbf{v} \cdot \mathbf{w} = 0$ iff \mathbf{v}, \mathbf{w} are orthogonal. (*ii*) $|\mathbf{v} \cdot \mathbf{w}| \leq |\mathbf{v}| |\mathbf{w}|$ with equality iff \mathbf{v}, \mathbf{w} are parallel.

L9.3 Orthonormal bases. The canonical base of $\mathbb{R}^{3,1}$ consists of

$$\mathbf{e}_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \quad \mathbf{e}_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

These three vectors (or their row counterparts e_i^{T}) are often denoted **i**, **jk**. They are unit vectors, and mutually orthogonal:

 $|\mathbf{i}| = |\mathbf{j}| = |\mathbf{k}| = 1,$ $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0.$

These relations can be neatly expressed by the single formula

$$\mathbf{e}_p \cdot \mathbf{e}_q = \delta_{pq},\tag{3}$$

where δ_{pq} stands for 1 if p = q, and 0 otherwise.

Definition. A basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ of \mathbb{R}^3 is called orthonormal if it satisfies (3) (with **v** in place of **e**).

The 'ortho' part means that the vectors are mutually orthogonal, and 'normal' stands for 'normalized', meaning of unit norm.

Exercise. Any set of three distinct vectors that satisfies (3) is necessarily LI, and so automatically a *basis* of \mathbb{R}^3 .

Given an orthonormal basis, let *P* denote the matrix whose columns are \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 . Then

$$P^{\mathsf{T}}P = \begin{pmatrix} \leftarrow \mathbf{v}_1^{\mathsf{T}} \to \\ \leftarrow \mathbf{v}_2^{\mathsf{T}} \to \\ \leftarrow \mathbf{v}_3^{\mathsf{T}} \to \end{pmatrix} \begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \\ \downarrow & \downarrow & \downarrow \end{pmatrix} = I_3.$$

Definition. A square matrix satisfying $P^{\mathsf{T}}P = I_n$ is called orthogonal.

We shall study such matrices in Part II.

 $\mathfrak{Warning}$. The terminology is misleading: the columns of an orthogonal matrix P are not just orthogonal but also orthonormal. It would make more sense to call P an 'orthonormal matrix', but nobody ever does!

L9.4 Components. We have seen that an arbitrary vector $\mathbf{v} \in \mathbb{R}^3$ can be expressed as

$$\mathbf{v} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + a_3 \mathbf{e}_3.$$

The numbers a_1, a_2, a_3 are called the *coefficients* of **v** relative to the canonical basis, and are also given by the formula

$$a_p = \mathbf{v} \cdot \mathbf{e}_p, \qquad p = 1, 2, 3. \tag{4}$$

Exactly the same result holds for any orthonormal basis:

Lemma. If $\{v_1, v_2, v_3\}$ is an orthonormal basis and v an arbitrary vector then

$$\mathbf{v} = (\mathbf{v} \cdot \mathbf{v}_1)\mathbf{v}_1 + (\mathbf{v} \cdot \mathbf{v}_2)\mathbf{v}_2 + (\mathbf{v} \cdot \mathbf{v}_3)\mathbf{v}_3 = \sum_{p=1}^3 (\mathbf{v} \cdot \mathbf{v}_p)\mathbf{v}_p$$

Proof. We know that \mathbf{v} can be written uniquely as

$$\mathbf{v} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3.$$

Taking the dot product of both sides with (for example) \mathbf{v}_1 yields

$$\mathbf{v} \cdot \mathbf{v}_1 = a_1 \mathbf{v}_1 \cdot \mathbf{v}_1 + a_2 \mathbf{v}_2 \cdot \mathbf{v}_1 + a_3 \mathbf{v}_3 \cdot \mathbf{v}_1 = a_1,$$

since $\mathbf{v}_1 \cdot \mathbf{v}_p = \delta_{1p}$.

More generally, suppose that **u** is a *unit* vector. Then

 $\mathbf{v} = (\mathbf{u} \cdot \mathbf{v})\mathbf{u} + \mathbf{w}, \qquad \mathbf{w} = \mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{u},$

QED

and (taking its dot product with \mathbf{u}) we see that \mathbf{w} is orthogonal to \mathbf{u} . Thus, $\mathbf{u} \cdot \mathbf{v}$ is the numerical component of \mathbf{v} in the direction \mathbf{u} .

Exercise. Any unit vector $\mathbf{u} \in \mathbb{R}^3$ can be extended to an ON basis { $\mathbf{u} = \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ } of \mathbb{R}^3 .

L9.5 Further exercises.

1. Let $\mathbf{u} = a\mathbf{i} + 2\mathbf{j} + b\mathbf{k}$, $\mathbf{v} = (1 - b)\mathbf{i} + b\mathbf{j} + 2\mathbf{k}$, $\mathbf{w} = b\mathbf{i} + b\mathbf{j} + 2\mathbf{k}$. Find the values of a and b for which the set $\{\mathbf{u}+\mathbf{v},\mathbf{w}\}$ is LI.

2. Let $\mathbf{v} = \mathbf{i} + \sqrt{3}\mathbf{j} + \mathbf{k}$. Is it true that \mathbf{v} mkes an angle of 60° with the *x*-axis?

3. Let $\mathbf{u}_1 = -\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{u}_2 = \mathbf{i} - \mathbf{j} + \mathbf{k}$, $\mathbf{u}_3 = \mathbf{i} + \mathbf{j} - \mathbf{k}$. Which of the followings sets is LI?

 $\{u_1, u_2\}, \{u_1+u_2, u_1-u_2\}, \{u_1, u_2, u_3\}, \{i, u_2, u_3\}.$

4. Find the angle between the following pairs of vectors

 $\{i, i+j\}, \{i+j, i+k\}, \{i+j, 2i+j+k\}.$

In each case, find a unit vector perpendicular to the two given vectors.

5. Given $\mathbf{u} = \mathbf{i} + 3\mathbf{j} - \mathbf{k}$ and $\mathbf{v} = \mathbf{i} - \mathbf{j}$, decompose \mathbf{u} as the sum of a vector perpendicular to \mathbf{u} and a vector parallel to \mathbf{v} .

- 6. Find all vectors coplanar with $\mathbf{u} = \mathbf{i} \mathbf{k} \in \mathbf{v} = \mathbf{i} + \mathbf{j}$, but orthogonal to $\mathbf{u} + \mathbf{v}$.
- 7. Compute $|\mathbf{u} + \mathbf{v}|^2$. Deduce that
 - (i) $\mathbf{u} \in \mathbf{v}$ are orthogonal iff $|\mathbf{u} + \mathbf{v}| = |\mathbf{u} \mathbf{v}|$,
 - (ii) $\mathbf{u} + \mathbf{v} \in \mathbf{u} \mathbf{v}$ are orthogonal iff $|\mathbf{u}| = |\mathbf{v}|$.
- 8. Find all vectors of norm 5 that are perpendicula to $2\mathbf{i} + \mathbf{j} 3\mathbf{k}$.
- 9. Consider the vectors

$$\mathbf{v}_1 = (2, 0, 0), \quad \mathbf{v}_2 = (1, 1, 0), \quad \mathbf{v}_3 = (3, 2, 1).$$

Express each in terms of **i**, **j**, **k** and deduce that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis of \mathbb{R}^3 .

10. Given $\mathbf{u} = 5\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$, check that $\mathbf{u} = |\mathbf{v}|\mathbf{i} + \mathbf{v}$. Deduce that \mathbf{u} bisects the angle formed by \mathbf{v} and \mathbf{i} .