
Notes 9 – Vectors in space

We shall represent points and displacements by vectors and study the scalar product.

L9.1 Cartesian coordinates. A choice of these allows us to label a point P in space by a
triple (x, y, z) . It is convenient to think of z as representing ‘height’, and (x, y) the point of
the ‘horizontal’ plane that P projects to. We shall regard the corresponding column vector

v = (x, y, z)⊤ =





x
y
z



 = ~OP

as the position vector of P relative to the origin O = (0, 0, 0) .

A column vector should be thought of as a displacement in space represented by direction and
length, but free to be applied at any point, not necessarily O . This allows us to visualize
the sum of two column vectors v + w as the displacement determined by the diagonal of a
paralellogram with sides v and w .

Moreover, if w = ~OQ then

~OP + ~PQ = ~OQ ⇒ ~PQ = w − v,

and the displacement from P to Q is represented by the difference of vectors, or subtraction.

In coordinates,

v =





x
y
z



 =





x
y
0



 +





0
0
z



 ,

and two applications of Pythagoras’s theorem tell us that its length is

√

(
√

x2 + y2)
2
+ z2 =

√

x2 + y2 + z2.

This quantity is called the norm or magnitude of the vector v , and denoted ‖v‖ or |v| . It is
the distance from O to P . Similarly, the distance from P to Q is

|PQ| = |v −w|.

A vector of norm 1 is said to be a unit vector.

L9.2 Dot or scalar product. We already defined this in order to multiply matrices. If

u =





a
b
c



 , v =





x
y
z



 ,

then
u · v = ax + by + cz = u⊤v

(ignoring the parentheses that are implicit in the last expression). We see immediately that

v · v = x2 + y2 + z2 = |v|2 > 0,
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so the norm squared of v is the scalar product of v with itself.

The following properties are easy to verify:

(i) v ·w = w · v ,
(ii) (au + bv) ·w = au ·w + bv ·w . Thus,

|v −w|2 = (v −w) · (v −w) = v · v − v ·w −w · v +w ·w
= |v|2 − 2v ·w + |w|2. (1)

We record the well-known

Definition. Let v,w be nonnull vectors in R
3 . If they make an angle of π/2 in their com-

mon plane, we say that they are perpendicular or orthogonal. If they make an angle of 0 or
π they are parallel.

In the first case, v − w is the hypotenuse of a right-angled triangle. and its length squared
is |v|2 + |w|2 . It follows from (1) that v ·w = 0. Here we have used Pythagoras’s theorem,
which is generalized by the Cosine Rule (Teorema di Carnot) for triangles (equally valid in
space because all the action takes place in a fixed plane). This states that

|PQ|2 = |OP |2 + |OQ|2 − 2|OP ||OQ| cos θ, (2)

where θ = ∠POQ . Comparing (1) and (2) gives the

Lemma. The scalar product can be expressed by the formula

v ·w = |v||w| cosθ,

where θ is the angle between v and w .

Since cosθ = cos(−θ) , we do not have to worry about the order in which we choose the two
vectors to measure the angle; this is consistent with (i) above.

The Lemma confirms that

Corollary. (i) If v,w are both nonzero then v ·w = 0 iff v,w are orthogonal.

(ii) |v ·w| 6 |v||w| with equality iff v,w are parallel.

L9.3 Orthonormal bases. The canonical base of R
3,1 consists of

e1 =





1
0
0



 , e2 =





0
1
0



 , e3 =





0
0
1



 .

These three vectors (or their row counterparts e⊤i ) are often denoted i, j k . They are unit
vectors, and mutually orthogonal:

|i| = |j| = |k| = 1, i · j = j · k = k · i = 0.

These relations can be neatly expressed by the single formula

ep · eq = δpq, (3)

where δpq stands for 1 if p = q , and 0 otherwise.

34



Definition. A basis {v1, v2, v3} of R
3 is called orthonormal if it satisfies (3) (with v in place

of e).

The ‘ortho’ part means that the vectors are mutually orthogonal, and ‘normal’ stands for
‘normalized’, meaning of unit norm.

Exercise. Any set of three distinct vectors that satisfies (3) is necessarily LI, and so automatically

a basis of R
3 .

Given an orthonormal basis, let P denote the matrix whose columns are v1, v2, v3 . Then

P⊤P =







← v⊤1 →
← v⊤2 →
← v⊤3 →











↑
v1
↓

↑
v2
↓

↑
v3
↓



 = I3.

Definition. A square matrix satisfying P⊤P = In is called orthogonal.

We shall study such matrices in Part II.

Warning . The terminology is misleading: the columns of an orthogonal matrix P are not
just orthogonal but also orthonormal. It would make more sense to call P an ‘orthonormal
matrix’, but nobody ever does!

L9.4 Components. We have seen that an arbitrary vector v ∈ R
3 can be expressed as

v =





a1

a2

a3



 = a1e1 + a2e2 + a3e3.

The numbers a1, a2, a3 are called the coefficients of v relative to the canonical basis, and are
also given by the formula

ap = v · ep, p = 1, 2, 3. (4)

Exactly the same result holds for any orthonormal basis:

Lemma. If {v1, v2, v3} is an orthonormal basis and v an arbitrary vector then

v = (v · v1)v1 + (v · v2)v2 + (v · v3)v3 =
3
∑

p=1

(v · vp)vp

Proof. We know that v can be written uniquely as

v = a1v1 + a2v2 + a3v3.

Taking the dot product of both sides with (for example) v1 yields

v · v1 = a1v1 · v1 + a2v2 · v1 + a3v3 · v1 = a1,

since v1 · vp = δ1p . QED

More generally, suppose that u is a unit vector. Then

v = (u · v)u +w, w = v − (u · v)u,
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and (taking its dot product with u) we see that w is orthogonal to u . Thus, u · v is the
numerical component of v in the direction u .

Exercise. Any unit vector u ∈ R
3 can be extended to an ON basis {u=u1,u2,u3} of R

3 .

L9.5 Further exercises.

1. Let u = ai + 2j + bk , v = (1 − b)i + bj + 2k , w = bi + bj + 2k . Find the values of a and b for
which the set {u+v,w} is LI.

2. Let v = i +
√
3j + k . Is it true that v mkes an angle of 60o with the x -axis?

3. Let u1 = −i + j + k , u2 = i − j + k , u3 = i + j − k . Which of the followings sets is LI?

{u1,u2}, {u1+u2, u1 − u2}, {u1,u2,u3}, {i,u2,u3}.

4. Find the angle between the following pairs of vectors

{i, i + j}, {i + j, i + k}, {i + j, 2i + j + k}.

In each case, find a unit vector perpendicular to the two given vectors.

5. Given u = i + 3j − k and v = i − j , decompose u as the sum of a vector perpendicular to
u and a vector parallel to v .

6. Find all vectors coplanar with u = i − k e v = i + j , but orthogonal to u + v .

7. Compute |u + v|2 . Deduce that

(i) u e v are orthogonal iff |u + v| = |u − v| ,
(ii) u + v e u − v are orthogonal iff |u| = |v| .

8. Find all vectors of norm 5 that are perpendicula to 2i + j − 3k .

9. Consider the vectors

v1=(2, 0, 0), v2=(1, 1, 0), v3=(3, 2, 1).

Express each in terms of i, j,k and deduce that {v1, v2, v3} is a basis of R
3 .

10. Given u = 5i + j − 2k and v = 2i + j − 2k , check that u = |v|i + v . Deduce that u bisects
the angle formed by v and i .
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