Notes 8 — Bases and dimension

The concepts of linear combination and linear independence are combined in the definition
of the basis of a subspace V of R”. Any two bases have the same number of elements, called
the dimension. When V' is represented as the row space of a matrix A, its dimension equals
the rank of A.

L8.1 Redundant elements. Describing a subspace as .Z {uy,---,ux} is all very well, but
there are infinitely many ways to choose the representative vectors uy, - - -, ux. Suppose that
{u, v} is a linearly independent set, and consider the subspace

V = Z{u, 2u, u+v, 0, u-7v}.

The right-hand side is a bit ridiculous since most of its elements are redundant. We can
make the list of vectors more effective as follows:

Retain the non-zero vector u.

Discard 2u because it is already in .Z {u}.

Retain u + v becuase it is not in .Z {u}.

Discard 0 (since the null vector is already present in .Z {u, v}!).

Discard u—7v as it too is in .Z {u, v}.
We are finished with V = £ {u, u+v}, which of course equals .Z {u, v} though it may be
that u+v is simpler than v in a numerical example.

Definition. Let V be a subspace of R". A basis of V is a linearly independentset {vy - -, vi}
such that V = £ {vy---,vi}.

A basis of V is therefore characterized by two key properties:

(B1) it generates V, meaning that any element in V' is a LC of the basis, and

(B2) the basis is LI.
The second condition implies that a basis can contain no more than n elements (for we can
represent the basis elements as rows of a matrix with n columns, so at most n rows are LI).

We shall often indicate a particular basis as follows: % = {vy,...,Vvk}. Some authors require
a basis to be an ordered set, in which case one could write & = (vy,...,vk).

Warning. Since no LI set can contain 0, neither can a basis.

L8.2 Bases of R". The definition of basis makes perfect sense if we take the subspace V = R"
(thought of as either row or column vectors), and there are infintely many bases to choose
from. But the most obvious is the one consisting of the rows or columns of the matrix I,. In
particular,

Definition. The canonical basis of R™! consists of the columns of I,,, and its individual
elements are denoted e, ..., e,.

Thus,
1 0
0 1
e = X ’ € = ’
0 0
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It is obvious that any v € R™! can be written in one and only one way as a LC of this basis:

a
V= : =aie; +---+axey.
an

But this property holds for any basis of any subspace. By property (B1), v can certainly be
written in some way as a LC of the basis, and by (B2),

vVv=aie1+---+aye, =bie; +---+bye,
= (al_bl)el +--t (an_bn)en =0
= a-b=0, --- a,-b,=0.

Exercise. Is % = {(2,-1,-1),(1,-2,1),(1,1,-2)} a basis of R!*?

L8.3 Finding bases by reduction. Bases can in theory be computed by the ‘discard /retain’
method described above. But often it is more effective to use row reduction. If B is step-
reduced, we know that the nonzero rows of B are LI. They certainly generate Row B be-
cause the missing rows are null! Thus we have the

Proposition. The nonzero rows of a step-reduced matrix B form a basis of Row B.

This gives us a prescription for finding a basis of any susbspace
V=%{uy, -, u} CR"

First suppose that the u; are row vectors. We can construct a matrix A € R¥" by taking
these vectors in any order to be the rows of A. Apply ERO’s to A to obtain a step-reduced
matrix B. Then the nonzero rows of B form a basis of Row B =Row A =V.

We can apply an identical procedure if the u; are column vectors; we only need to transpose
them into rows, and at the end of our labours transpose the nonzero rows of B back into
columns. We shall illustrate the latter by constructing a basis of the subspace

1 6 11 16
2 7 12 17
W=% 3,1 81, 131, 18 c R
4 9 14 19
5 10 15 20
We convert the columns into rows and reduce the 5x4 matrix:
1 2 3 4 5 1 2 3 4 5
6 7 8 9 10 0 -5 -10 -15 =20
11 12 13 14 15 | ~ 0 -10 -20 -30 -40
16 17 18 19 20 -15 -30 -45 -60 -75
2 3 5 2 3 45
|l o [5] <10 <15 20 |_[ 0o [1] 2 3 4
0o 0 0 0 o0 0 0 0 00
o 0 0 0 0 0 0 0 00
0 -1 -2 -3
_l o 2 3 4
0 0 0 0 O
0 0 0 0 O
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The fact that W has a basis of two elements is already clear after two steps, and the super-
reduction was unnecessary. But we can now give three useful bases:

1 0 -1 0 1 6
2 1 0 1 2 7
W= 3,12 = 1], ]2 = 3|, | s
4 3 2 3 4 9
5 4 3 4 5 10

L8.4 Dimension. First we reassure ourselves that any subspace of R"” has a basis.

Theorem. Let V be a subspace of R" which is not null. Then V has a basis consisting of at
most n elements.

Proof. By assumption, V' contains a nonzero vector u;. Then
either V = Z {u;} or we can choose u; € V \ Z{u;}.

In the latter case, up cannot be a multiple of u;, and
either V = Z{uj,uy} or we can choose uz € V \ .Z {uy, uy}.

In the latter case {uj,up, u3} is LI since any linear relation could be used to express uz as
a LC of uj,uz, and the procedure can be continued. The set of elements uy, up, ... that we
have selected at each stage is necessarily LI for the same reason. But we know that it is
impossible to have more than n elements of R” that are LI. So the process must stop. QED

Recall that if the rows of a matrix A € R™" are LI then r(A) = m. A deeper fact we have
seen is that if A, B are two matrices of the same size with Row A = Row B then A ~ B.
Corollary. Let V' be a subspace of R" that is not null. Any two bases of V' have the same

number of elements.

Proof. Given two bases {ai,...,a¢} and {by,...,b,,} with ¢ < m, make them the rows of
matrices A and B, adding null rows to A so that A, B both have size m x n:

—a — %b1—>
— b, —
A= , B= 2
—ayg —
—0— — b, —

The ranks of A, B are ¢,m respectively. But since both sets of rows generate the same
subspace V, we must have Row A = Row B. From the earlier fact A ~ B, and so r(A) =
r(B), a contradiction. QED

The number of elements in a basis is called the dimension of V, and we write it as dim V.
For a subspace of R”, we know that dim V' < n. Thus,

V=%2{uy,...,ux}, k=dimV.
LI
If V = {0} then we set dimV =0, and (by convention) declare @ to be a basis.

Our final big result before turning to more geometrical applications is

Theorem. For any matrix A of size m x n,

dim(Row A) =r(A), dim(Ker A) = n—r(A).
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Proof. We may suppose that A is step-reduced as none of Row A, Ker A, r(A) changes un-
der ERO’s. The nonzero rows of A then form a basis of Row A, whence the first equality.
The second equality is then a restatement of (RC2), whereby the solutions of the homoge-
neous system Ax = 0 depend on n — r(A) free parameters. More precisely, a basis of the
Ker A is given by the solutions of the form

X = (al,...,aj,l,—l,O...,O)T,
of which there is one for each unmarked column. QED

We have also stated that the marked columns of B (of which there are r(B) in number)
form a basis of Col B, though the latter does in general change with ERO’s. But the columns
of two row equivalent matrices satisfy the same linear relations, so the same columns will
form a basis of Col A. Thus,

dim(Col A) = r(A).

Corollary. r(A) = r(A") for any matrix A.

This result is important as it means all the definitions and procedures that we carried out
would have given the same results had we interchanged the roles of rows and columns. We
shall return to study the column space of a matrix in Part II.

L8.5 Further exercises.

1. Find the dimensions of the following subspaces of R’:

U=2{1,3,-2,23),1,4,-3,4,2),(2,3,-1,-2,9)},
V=2(1,3,0,21),(1,5-6,6,3),(2,5,3,2,1)} .

Let W denote the subspace generated by all six row vectors. Find dim W = 5.
2. Find the dimensions of the following subspaces of R’:

u = {(xl,xz,xg,x4,x5) :2x1 — X2 — X3 = 0, X4—3X5 = 0},
V= {(xl,XQ,X3,X4,X5) :2x1 — X2 + X3 +4x4 +4x5 = 0}.

Let W denote the subspace consisting of vectors satisfying all three equations. Is it true that
dimW =57

3. Consider the following vectors of R*:
wi =(1,0,1,0), wy=(2,h,2,h), wz=(1,1+h,1,2h).
Find the dimension of .Z {w, w;, w3} as h varies.

4. Find a basis of R* that contains both a basis for U and basis of V, where

U={(xy,zt)e R*:x-2z= y =0},
v=%2{0,21-1),01,-2,1,1),@1,2,3,-1),(1,2,7,1)} .

5. Explain carefully why the marked columns of a step-reduced matrix B form a basis of
Col B.
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