
Notes 7 – Subpaces of R
n

We can understand the theory of matrices better using the concept of subspace.

L7.1 Closure. We continue to use R
n to denote either the set R

1,n of row vectors, or the set
of column vectors R

n,1 . The definitions in this lecture apply equally to both cases, though
at times it is best to specify one or the other.

Definition. A subspace of R
n is a nonempty subset V that is ‘closed’ under addition and

multiplication by a constant, meaning that these operations do not allow one to escape from
the subset V (like a room with closed doors!).

Thus, V is a subspace iff

(S1) u, v ∈ V ⇒ u + v ∈ V ,
(S2) a ∈ R, v ∈ V ⇒ av ∈ V .

The word ‘space’ conveys the fact that, with these operations, the subset V acquires a struc-
ture of its own without the need to refer to R

n . It is an immediate consequence that any
subspace must contain the null vector. For if v ∈ V then

0 = v + (−1)v ∈ V.

Moreover, the singleton set {0} consisting of only the null vector is always a subspace. It is
called the null subspace or zero subspace and any other subspace of R

n must have infinitely
many elements. Warning : do not confuse the null subspace with the empty set ∅ that is not
counted as a subspace.

At the other extreme is R
n itself. There is no doubt that this is a subspace, as conditions (S1)

and (S2) are satisfied by default: the vectors u+v and av are certainly in R
n as they have

nowhere else to go!

Example. To test whether a subset of R
n is a subspace, check first that it contains 0 . Be careful

though; here are two subsets of the plane that both contain 0 but are not subspaces:

(a) A = {(x, y) ∈ R
2 : x > 0 and y > 0 , geometrically the first quadrant; it satisfies (S1) but not

(S2).

(b) B = {(x, y) ∈ R
2 : xy = 0} , geometrically the union of the two axes; it satisfies (S2) but not

(S1).

In practice, subspaces are constructed by taking linear combinations of vectors:

Lemma. Any subset L {u1, . . . ,uk} (with each ui ∈ R
n ) is a subspace.

Proof. For simplicity, suppose that we have only two vectors u1 =u , u2 = v . Two arbitrary
elements of L {u, v} are then au+bv , cu+dv , and their sum

(au + bv) + (cu + dv) = (a + c)u + (b + d)v

obviously stays in L {u, v} . So does any multiple of au + bv . QED

The converse of this result is valid, namely that any subspace of R
n can be expressed in

the form L {u1, . . . ,uk} . To see this, one chooses a succession u1,u2, . . . of vectors in V ,
preferably in such a way that each one is not a LC of the previous ones. We shall explain
this better in the next lecture.
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L7.2 Solution spaces. The set of solutions of a homogeneous system considered previously
had the form V = L {u, v} , where u, v were two column vectors, and is therefore a sub-
space. But there is a more basic reason for this:

Proposition. Given a matrix A ∈ R
m,n , the set

{x ∈ R
n,1 : Ax = 0} (1)

of solutions of the associated homogeneous linear system is always a subspace of R
n,1 .

Proof. This follows from the corresponding properties of matrix multiplication. If x, y are
solutions then

A(x + y) = Ax +Ay = 0 + 0 = 0,

so x + y is a solution too. Similarly,

A(ax) = a(Ax) = a0 = 0,

and ax is a solution for any a ∈ R . QED

Definition. The subspace (1) is called the null space or kernel of the matrix A , and denoted
KerA .

Example. Let W denote the set of vectors (x, y, z) that satisfy x + y + z = 0. Since this is
effectively a linear system (with m = 1 and n = 3), W is a subspace of R

3 . But we can easily
express it as a LC by picking a couple of elements in it. Let u = (1,−1, 0) and v = (0, 1,−1) . Both
lie in W since their entries add up to 0. But we claim that any element (x, y, z) of W is a LC of
u and v . Indeed,

(x, y, z) = (x, −x − z, z) = xu − zv,

as claimed. Thus W = L {u, v} .

Warning : The solution set is only a subspace when the system is homogeneous. For a inho-
mogeneous system Ax = b , the solution set has the form

{x0 + v : v ∈ KerA}.

Here, x0 is any particular solution of the inhomogeneous equation Ax = b ; the difference of
any two such solutions x0, x1 belongs to KerA because A(x1 − x2) = 0 .

L7.3 Subspaces defined by a matrix. Given a matrix A , two separate collections of vectors
are staring us in the face:

the rows r1, · · · , rm ∈ R
1,n of A , and

the columns c1, · · · · · · , cn ∈ R
m,1 of A .

These give rise to two respective subspaces that complement the one already defined in (1).

Definition. With the notation above,

(i) the row space of A , denoted RowA , is L {r1, · · · , rm} ⊂ R
1,n , and

(ii) the column space of A , denoted ColA , is L {c1, · · · · · · , cn} ⊂ R
m,1 .

More informally, RowA is a subsapce of R
n , whereas ColA is a subspace of R

m .
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Each row of A corresponds to an equation of the linear system with augmented matrix
(A | 0) . We already know that there are many ways to transform this system into an equiv-
alent one with the same solutions. The next result formalizes the fact that it is the row space
RowA (rather than the individual rows of A) that determines the solution space KerA .

Lemma. KerA = {x ∈ R
m,1 : rx = 0 for all r ∈ RowA} .

Proof. Since

Ax =





r1 · x

·

rm · x



 ,

x belongs to KerA iff rix = 0 for all i . This implies that rx = 0 for any r ∈ RowA since such
an r is a LC of the rows r1, · · · , rm . Conversely, if rx = 0 for all r ∈ RowA then certainly
rix = 0 for all i , and so Ax = 0. QED

Recall the notion of row equivalence. It is easy to see that

A ∼ B ⇒ RowA = RowB. (2)

For if A ∼ B , each row of B is obtained from A using ERO’s, and RowB ⊆ RowA . But the
process is reversible: B ∼ A and RowA ⊆ RowB . It follows from the Lemma that

A ∼ B ⇒ KerA = KerB, (3)

confirming something we already know: if two matrices A,B are row equivalent then the asso-
ciated homogeneous systems have the same solutions.

We can complete these observations by the next result, which is easily memorized.

Theorem. Let A,B be two matrices of the size m × n . The following are equivalent:

(i) A ∼ B , i.e. A and B are related by ERO’s.

(ii) RowA = RowB ,

(iii) KerA = KerB .

This is especially relevant in the case in which B is a step-reduced matrix obtained by ap-
plying ERO’s to A . Notice that the statement A ∼ B forces the matrices to have the same
size – one could relax this requirement (and retain the Theorem’s validity) by introducing a
fourth ERO, that of deleting null rows.

Warning . A ∼ B does not imply that ColA = ColB ; to see this reduce the matrix
(

0
1

)

.

Proof. Assume (ii). We already know that this implies (iii). Applying ERO’s does not
change the row space (statement (2)), so we may assume that A and B are step-reduced.
Since the systems Ax = 0 , Bx = 0 have the same solutions, we know that the markers of A
and B occur in the same positions, and we may as well suppose that neither has a null row.

To deduce (i), one uses an ‘exchange’ technique that we shall describe by means of an ex-
ample with n = 5. Let ai be the rows of A , and bi those of B ; the idea is to slowly replace
the former by the latter by the process illustrated:
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A′ =















← b1 →

← b2 →

← a1 →

← a3 →

← a4 →















, A′′ =















← b1 →

← b2 →

← b3 →

← a1 →

← a3 →















Suppose that we have already shown that A is row equivalent to A′ , in which a2, a5 have
been replaced by b1,b2 . Since

b3 ∈ RowB = RowA = RowA′

(the last equality by (2)), b is a LC of the rows of A′ . In this LC, one of a1, a3, a4 must figure
with a nonzero coefficient, otherwise b1,b2,b3 would not be LI. If (say) a4 features then
A′′ can be obtained from A by a sequence of ERO’s, and A ∼ A′ ∼ A′′ . We can repeat the
process and conclude at the end that A ∼ B .

To see that (iii) implies (ii), we need the formula

RowA = {r ∈ R
1,n : rx = 0 for all x ∈ KerA}

that is the counterpart of the Lemma. It is obvious that RowA is contained in the right-hand
side, though the equality is best proved using the notion of dimension that will be discussed
in the next lecture. QED

L7.4 Further exercises.

1. Use ERO’s to show that the following subspaces of R
4 coincide:

L {(1, 2,−1, 3), (2, 4, 1,−2), (3, 6, 3,−7)} , L {(1, 2,−4, 11), (2, 4,−5, 14)} .

2. Consider the following subspaces of R
4 :

U = L {(1, 2,−1, 3), (2, 4, 1,−2), (3, 6, 3,−7)} , V = L {(1, 2,−4, 11), (2, 4, 0, 14)} .

Is it true that U ⊆ V or V ⊆ U?

3. Let W = {(x, x, xy, y, y) : x, y ∈ R} . Which of the following statements is true?

(i) W is a subspace of R
5 ,

(ii) W is contained in a proper subspace U (so W ⊆ U 6= R
5 ),

(iii) W contains a subspace V that is not null (so 0 6= V ⊆W ).

4. Show that
ColA = {x⊤ ∈ R

m,1 : x ∈ Row(A⊤ )}.

This means that ColA is effectively the same as Row(A⊤ ) . We could define a fourth sus-
bpace Ker(AT) = {x ∈ R

m,1 : x⊤A = 0} , but we have enough work to do studying RowA
and KerA for the time being!
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