
Notes 6 – Solving a general system

Having introduced the rank of an arbitrary matrix, we are in a position to formulate the
celebrated results of E. Rouché (1832–1910) and A. Capelli (1855–1910) concerning solutions
of a (generally inhomogeneous) linear system of equations. From now on, we denote the rank
of a matrix M by r(M) .

L6.1 The augmented matrix. Let us return to the inhomogeneous system in matrix form

Ax = b , A ∈ R
m,n, x ∈ R

n,1, b ∈ R
m,1.

We associate with this the so-called augmented matrix

(A |b) =









a11 · · a1n b1
· · ·

· · ·

am1 · · amn bm









. (1)

The vertical bar reminds us that the last column is special, but in applying row operations
it should be ignored so that b is just treated as an extra column added to A . We solve the
system by applying ERO’s to (1) so that it becomes a step-reduced matrix

(A′ |b′). (2)

Warning : in doing this it is essential to apply each ERO to the whole row, including bi ; thus
the last column will usually change unless it was already null.

Note that if (2) is step-reduced, so is the left-hand matrix A′ . By definition then,

r(A) = r(A′), r(A |b) = r(A′ |b′),

where we are relying on the previous Theorem. Furthermore,

r(A′) 6 r(A′ |b′) 6 r(A′) + 1,

and we consider the two possibilities in turn. First, we record the

Lemma. The m rows of a matrix A ∈ R
m,n are LI if and only if r(A) = m . In particular,

since r(A) 6 n , no set of LI vectors in R
n has more than n elements.

Proof (of ‘only if’). Suppose that the rows of A are LI but that r(A) < m . In this case, when
ERO’s are performed to convert A into a step-reduced matrix A′ the last row rm of A′ will
be null. But (inverting the operations one by one) rm is ultimately a nontrivial LC of the
rows of A , contradiction. QED

Think of LI rows as ‘incompressible’: when the matrix is reduced they are not diminished
in number.

Exercise. (i) The columns of a matrix A are LI iff the matrix equation Ax = 0 admits only the

trivial solution x = 0 ∈ R
m,1 .

(ii) The rows of a matrix are LI iff the equation xA = 0 only has the trivial solution x = 0 ∈ R
1,n .

(iii) The rows of amatrix are LI iff the equation A⊤x = 0 only has the trivial solution x = 0 ∈ R
n,1 .
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L6.2 Inconsistent systems. Given a linear system, the student-friendly situation is that in
which there are no solutions, as one does not have to waste time finding them!

Proposition. (RC1) If r(A) < r(A |b) , the system has no solutions.

This case can only occur if r(A) is less than the number m of its rows, since otherwise both
matrices will have rank m .

Proof. Let r = r(A) < r(A |b) . Then the first null row of A′ is the (r +1)st and will be
followed by br+1 6= 0 in the step-reduced matrix (2). This row represents a contradictory
equation

0x1 + · · · + 0xn = br+1,

and the only way out is that the xi do not exist.

L6.3 Counting parameters. The consistent case is characterized by the

Proposition. (RC2) If r(A) = r(A |b) , there exist solutions dependingupon n−r parameters
where r is the common rank. If n = r there is a unique solution.

Of course, if the system is homogeneous we must be in this case since A and (A | 0) only
differ by a null column.

Proof. Each column of A and A′ corresponds to a variable, so we can speak of ‘marked’ and
‘unmarked’ variables. It is easier (but not essential) to assume that B+ is super-reduced, in
which case its ith row has the form

(0 · · · 0 1 ? . . . ? | ci),

and represents an equation

marked variable + LC of unmarked variables = ci.

It follows that we can assign the unmarked variables arbitrarily and solve uniquely for each
of the marked variables in terms of them. QED

In the light of the procedure above, the unmarked variables are called free variables, and in
the solution it is good practice to give them new names such as s, t, u · · · or t1, t2, t3 . . . . The
conclusion is traditionally expressed by the statement

‘If r(A) = r(A |b) = r then the linear system has ∞n−r solutions’.

This is a useful way of recording the result that can be understood as follows. The ac-
tual number m of equations is irrelevant; what is important is the number of LI or effective
equations, and this is the rank r . Each effective equation allows us to express one of the n
variables in terms of the others, so we end up with n − r free variables or parameters.

L6.4 Inversion by reduction.

Having introduced the augmented matrix, we can apply similar techniques to solve matrix
equations of the type AX = B where X and B are matrices rather than just column vectors.
A special case is

AX = In, A,X ∈ R
n,n,
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whose solution X (if it exists) is necessarily A−1 . As a consequence,

Proposition. If A ∈ R
n,n is invertible then the unique super-reduced form of (A | In) is

(In |A
−1) .

Here is an example:

(A | I5) =





1 1 2 1 0 0
3 5 8 0 1 0
13 21 35 0 0 1



 ∼





1 1 2 1 0 0
0 2 2 −3 1 0
13 21 35 0 0 1





∼





1 1 2 1 0 0
0 2 2 −3 1 0
0 8 9 −13 0 1



 ∼





1 1 2 1 0 0
0 2 2 −3 1 0
0 0 1 −1 −4 1





∼





1 1 2 1 0 0
0 2 0 −1 9 −2
0 0 1 −1 −4 1



 ∼





1 1 0 3 8 −2
0 2 0 −1 9 −2
0 0 1 −1 −4 1





∼







1 1 0 3 8 −2

0 1 0 − 1
2

9
2 −1

0 0 1 −1 −4 1





 ∼







1 0 0 7
2

7
2 −1

0 1 0 − 1
2

9
2 −1

0 0 1 −1 −4 1





.

confirming the inverse found in L2. The matrices on the right act as a ‘book-keeping’ of the
ERO’s which there is no need for us to record separately.

The reason the methodworks is that each of the three types of ERO’s is actually achieved by
pre-multiplying A by a suitable invertible matrix Ei . For example, the first two are achieved
by

E1 =





1 0 0
−3 1 0
0 0 1



 . E2 =





1 0 0
0 1 0

−13 0 1





respectively. By the time we have finished, the last line tells us that

E7E6E5E4E3E2E1A = I5 ⇒ A−1 = E7E6E5E4E3E2E1I5.

Corollary. If A ∼ B there exists an invertible matrix E ∈ R
m,m such that EA = B .

L6.5 Further exercises.

1. Consider the linear systems

(i)

{

−x1 − 2x2 + x3 = 0
x1 + 3x2 − x3 = a,

(ii)







x1 − 2x2 = 1
2x1 + x2 = 2
x1 − x2 = b,

(iii)







−x1 − 2x2 + x3 − 2x4 = 0
2x1 + 3x2 − 3x3 + 3x4 = 1
x2 + x3 + x4 = c.

Is it true that for every a ∈ R , (i) has infinitely many solutions?

Is it true that (ii) never has a solution irrespective of the value of b?

Is it true that for all c ∈ R , (iii) has a solution?

2. Given the system







x1 + x2 + x3 = k
x1 − kx2 + x3 = −1
−x1 + kx2 + x3 = k,

find all solutions in the case that k = −1.
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Then discuss the existsence of solutions as k varies.

3. Find a relation between h1, h2, h3 in order that







x1 − 2x2 + x3 + 2x4 = h1

x1 + 3x2 + x3 − 3x4 = h2

2x1 + x2 + 2x3 − x4 = h3

has a solution. Find the general solution when h1 = −1, h2 = 4, h3 = 3.

4. Use ERO’s to reduce the matrix A =





2 5
2 3

4 5 a
b b b



 with a, b ∈ R . One of the following

statements is false. Which?

(i) If b = 0 then r(A) 6 2,

(ii) A is invertible if a = b = 1,

(iii) A is invertible if a 6= 6,

(iv) r(A) > 1 for any a, b ∈ R .

5. Find values of t ∈ R for which each of the following matrices is not invertible:

(

1 −t
t 4

)

,
(

3 − t −2
−5 −t

)

,





−t −2 −3
0 1 − t 1
1 2 −t



 ,









−t 3 −3 −6
0 −t 0 0
1 1 −t 0
1 0 0 −t









.

6. Find the values of λ ∈ R for which A =





λ 1 −1
0 2 1
0 1 λ



 is invertible. Now set λ = 1, and

solve the matrix equation AX = B where X ∈ R
3,2 and B =





2 1
0 1
2 0



 .

7. Given A =





1 2 3
4 5 6
1
2 1 3

2



 , b =





4
8
2



 , verify that the equation AX = B has an infinite

number of solutions and determine the number of free paraemters.

8. Given A=

(

2 −1
−4 2

)

, which of the following equations admit at least one solution?

A
(

x
y

)

=

(

0
0

)

, A
(

x
y

)

=

(

1
0

)

, A
(

x
y

)

=

(

1
−2

)

, A2
(

x
y

)

=

(

1
−2

)

.

9. Give the matrices

A=





2 −3 −2 1
4 −6 1 −2
6 −9 −1 −1



 ; X =









x1

x2

x3

x4









; B1 =





1
2
3



 , B2 =





1
2
0



 , B3 =





0
0
0



 ,

determine the solutions of the matrix equations AX = B1 , AX = B2 , AX = B3 .
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