
Notes 3 – Linear systems of equations

In this lecture, we shall introduce linear systems, interpret them in terms of matrices and
vectors, and define linear combinations of vectors.

L3.1 Introduction. Here is an example of a so-called linear system:







x1 + x2 + 2x3 + 3x4 = 3
5x1 + 8x2 + 13x3 + 21x4 = 7

34x1 + 55x2 + 89x3 + 144x4 = 4
(1)

This one consists of 3 equations in 4 unknowns. The problem is to determine all possible val-
ues of these unknowns x1, x2, x3, x4 that solve all 3 equations simultaneously. Each equation
might be expected to impose a single constraint, and since there are fewer equations than
unknowns we might guess that it is not possible to specify the unknowns uniquely. How-
ever, without checking the numbers on the right, it is conceivable that the 3 equations are
inconsistent and that there are no solutions.

The situation is best illustrated with pairs of equations, each in 2 unknowns. Consider the
four separate systems

(a)

{

x + 2y = 0
3x + 4y = 0

(b)

{

x + 2y = 7
3x + 4y = 8

(c)

{

x + 2y = 0
2x + 4y = 0

(d)

{

x + 2y = 7
2x + 4y = 8

(2)

Those on the left are called homogeneous because the numbers on the right are all zero,
whereas (b) and (d) are inhomogeneous or nonhomogeneous. Any homogeneous system al-
ways has at least one solution, namely the one in which all the unknowns are assigned the
value 0; this is called the trivial solution.

It is easy to check that in cases (a) and (b) the two equations are independent and that there
is a unique solution of the system. For (a), it is the trivial solution x = 0 = y ; for (b) it is
x = −6, y = 13/2, or expressed more neatly (x, y) = (−6, 132 ) .

In (c) it is obvious that the second equation is completely redundant; it is merely twice the
first. In this case, we can assign any value to (say) y and then declare that x = −2y ; we
say that y is a free variable and that the general solution depends on one free parameter. In a
sense, the system (c) is ‘underdetermined’.

In (d), the two equations are incompatible; the first would imply that 2x + 4y = 14 and we
get 14 = 8. This means that there is no solution; the system is called inconsistent. By contrast,
homogeneous equations are always consistent.

To sum up, we can have no solutions, a unique solution (one and only one value for each
unknown) or infinitely many solutions. We shall see that the same is true for a linear system
of arbitrary size. With this knowledge, and without further examination, we can be confi-
dent that (1) has either infinitely many solutions or not at all; it cannot have say exactly four
solutions!
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L3.2 Matrix form. Let us begin with an arbitrary linear system of the form



























a11x1 + . . . . . . + a1nxn = b1
a21x1 + . . . . . . + a2nxn = b2

· · · · · ·

· · · · · ·

am1x1 + . . . . . . + amnxn = bm

We shall always use

m to denote the number of equations, and
n to denote the number of unknowns or variables.

We now see that the notation is tailored to that of matrices; indeed the system can be rewrit-
ten in the succinct matrix form

Ax = b (3)

where

A=





a11 · · a1n

· ·

am1 · · amn



 ∈ R
m,n, x=









x1

·

·

xn









∈ R
n,1, b=





b1
·

bm



 ∈ R
m,1.

The system is homogeneous iff b = 0 is the null vector. A solution of the system is now
understood as meaning a column vector x of length n that satisfies (3). The problem is to
find all such vectors.

Observe that in the matrix form (3), the left-hand side of each equation is translated into a
row of A . We shall normally solve such a system by operating on the rows of A , but first
we show how the inverse matrix can sometimes be used.

Example. Consider the linear system (3), and suppose that m = n and that A is invertible. This
means that we can find a matrix A−1 such that A−1A = In . Then

A−1(Ax) = A−1b ⇒ (A−1A)x = A−1b ⇒ x = A−1b,

and the system is solved uniquely. Thus, a linear systemwith the same number of equations and
variables whose associated matrix is invertible has a unique solution. Applying this method to
the generic 2×2 system

{

ax + by = p
cx + dy = q.

gives
(

x
y

)

=
1

ad − bc

(

d −b
−c a

)(

p
q

)

=
1

ad − bc

(

dp − bq
−cp + aq

)

.

The solution is neatly expressed as

x =

∣

∣

∣

∣

(

p b
q d

)
∣

∣

∣

∣

∣

∣

∣

∣

(

a b
c d

)∣

∣

∣

∣

, y =

∣

∣

∣

∣

(

a p
c q

)
∣

∣

∣

∣

∣

∣

∣

∣

(

a b
c d

)∣

∣

∣

∣

.

It is a special case of Cramer’s rule,whereby each unknown is obtained by susbstituting a column

of A by b , taking the determinant, and then dividing by detA .
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L3.3 Linear combinations. Let A be the matrix of left-hand coefficients defined by a linear
system. We can instead emphasize the role played by the columns c1, . . . cn of A by rewriting
the system as

x1





a11

·

am1



 + x2





a12

·

am2



 + · · · + xn





a1n

·

amn



 =





b1
·

bm



 .

Equivalently,
x1c1 + x2c2 + · · · + xncn = b. (4)

This is called the column vector form of the system. In this interpretation, the simultaneous
nature of the m equations translates into a relation between the column vectors of length m
involving the coefficients xi . For example

−6
(

1
3

)

+ 13
2

(

2
4

)

=

(

7
8

)

is the solution of example (2)(b) in these terms.

This motivates the

Definition. Fix n , and let u1, . . . ,uk be finitely many vectors of length n (either all in R
1,n

or all in R
n,1 ). A linear combination (LC) of these vectors is any vector of the form

a1u1 + · · · + akuk

with a1, . . . , ak ∈ R . The set of all such linear combinations is written L {u1, . . . ,uk} .

Thus L {u1, · · · ,uk} is the set of vectors ‘generated’ by the ui . Often it is called their span
and written 〈u1, . . . ,uk〉 . It is an example of a subspace, something that we shall study in a
future lecture. It does not depend on the order in which the ui are written; it is a function
of the unordered set {u1, . . . ,uk} , which mathematicians usually write with curly brackets.

Solving a linear system then amounts to trying to express the given vector b as a LC of the
columns manufactured from the left-hand coefficients. A solution exists iff

b ∈ L {c1, . . . , cn} .

Whilst the rows of A represent the equations, it is linear combinations of the columns that
characterize the solutions. In the study of linear systems, one is constantly torn between
favouring the rows of the associated coefficient matrix, or the columns.

Exercise. Let v =

(

1
2

)

, w =

(

2
4

)

. Show that L {v,w} = L {v} and that

(

x
y

)

∈ L {v} iff

y = 2x . The fact that

(

7
8

)

6∈ L {v} explains why the system (d) had no solution.

Example. Consider the row vectors i=(1, 0, 0) , j=(0, 1, 0) , k=(0, 0, 1) . Then

L {i} = {(x, 0, 0) : x ∈ R},

L {i, j} = {(x, y, 0) : x, y ∈ R} = {(x, y, z) : z = 0}.

The last line shows a linear combination of vectors characterized by an equation, something we

shall see over and over again. Note also that L {i, 0} = L {i} and L {i, i+j} = L {i, j} .
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L3.4 Further exercises.

1. Determine which of the following homogeneous systems admit only the trivial solution:







3x + y − z = 0
x + y − 3z = 0
x + y = 0,







−4x + 2y + z = 0
3x − 5y + z = 0
3x + y − 2z = 0,







−2x1 + x2 + x3 = 0
x1 − 2x2 + x3 = 0
x1 + x2 − 2x3 = 0.

2. Find all the solutions of the linear systems







3x + y − z = 0
x + y − 3z = 1
x + y = −1,







−4x + 2y + z = 0
3x − 5y + z = 1
3x + y − 2z = −1,







−2x1 + x2 + x3 = 0
x1 − 2x2 + x3 = 1
x1 + x2 − 2x3 = −1.

3. Given the row vectors v1 = (a, b, c) , v2 = (1, 1, 0) , v3 = (0, 1,−1) , w = (2, 3,−1) , consider
the equation

x1v1 + x2v2 + x3v3 = w. (5)

Determine whether there exist a, b, c ∈ R such that

(i) equation (5) has a unique solution (x1, x2, x3) ,

(ii) equation (5) has no solution,

(iii) equation (5) has infinitely many solutions.

12


