Notes 24 - Conics and Quadrics

In the last lecture, we discussed conics defined by setting a quadratic form equal to a constant. After defining a general conic, we list the eight different types and investigate when a conic has a centre of symmetry. We then move on to discuss quadrics from a similar point of view.

L24.1 Definition of a conic. A conic \mathscr{C} is the set of points (x, y) in \mathbb{R}^{2} determined by an equation of the form

$$
\begin{equation*}
A x^{2}+2 B x y+C y^{2}+2 D x+2 E y+F=0 \tag{1}
\end{equation*}
$$

where A, \ldots, F are real constants, and A, B, C are not all zero so that the left-hand side is a polynomial of degree 2 in the two variables x, y. (The 2's are for convenience later.)
Often we shall refer to an equation like (1) as a conic, though strictly speaking the latter is a set of points. The conics we discussed before were those for which $D=E=0$. In this case, by diagonalizing the symmetric matrix

$$
S=\left(\begin{array}{ll}
A & B \tag{2}\\
B & C
\end{array}\right)
$$

we can always rotate the coordinate system so that the equation of \mathscr{C} becomes

$$
\lambda_{1} X^{2}+\lambda_{2} Y^{2}=\mu, \quad \mu=-f .
$$

It follows that \mathscr{C} is one of
(i) an ellipse (if $\lambda_{1}, \lambda_{2}, \mu$ all have the same sign); a circle is the special case in which $\lambda_{1}=\lambda_{2}$; (ii) a hyperbola (if λ_{1}, λ_{2} have opposite signs and $\mu \neq 0$); the corresponding special case $\lambda_{1}=-\lambda_{2}$ gives rise to a rectangular hyperbola whose asymptotes are perpendicular;
(iii) two straight lines interecting in one point (if λ_{1}, λ_{2} have opposite signs but $\mu=0$);
(iv) two parallel lines (if one of λ_{1}, λ_{2} is zero and the other has the same sign as μ);
(v) a single line (if one of λ_{1}, λ_{2} is zero and $\mu=0$, for then the equation actually defines two coincident lines, though only one is visible to the naked eye);
(vi) a point (if λ_{1}, λ_{2} have the same sign but $\mu=0$);
(vii) in all other cases, the set of points satisfying (1) is empty.

Allowing D, E to be nonzero produces only one other type, namely (viii) a parabola (such as $x^{2}+y=0$, or less obviously $4 x^{2}+6 x y+9 y^{2}+x=0$).

Given the general equation (1), we can try first to eliminate the term $2 D x+2 E y$ of degree 1 by a change of coordinates of type

$$
\left\{\begin{array}{l}
x=X+u \tag{3}\\
y=Y+v .
\end{array}\right.
$$

This corresponds to a translation in which the new system $O X Y$ has its origin O at the old point $(x, y)=(u, v)$. Substituting (3) into (1), we see that the new term of degree 1 is

$$
2 A u X+2 B(X v+u Y)+2 C v Y+2 D X+2 E Y=2(A u+B v+D) X+2(B u+C v+E) Y .
$$

To eliminate all this, we need to solve the linear system with unknowns u, v and matrix

$$
\left(\begin{array}{ll|l}
A & B & -D \tag{4}\\
B & C & -E
\end{array}\right) .
$$

Since the left-hand side of this matrix is twice (2), a solution may not be possible if $\operatorname{det} S=0$.
Definition. The conic \mathscr{C} is central if there is a translation (3) that converts its equation into the form $A^{\prime} X^{2}+2 B^{\prime} X Y+C^{\prime} Y^{2}+F^{\prime}=0$. In this case, $(X, Y) \in \mathscr{C} \Leftrightarrow(-X,-Y) \in \mathscr{C}$, and the centre of symmetry is the point $(X, Y)=(0,0)$ or $(x, y)=(u, v)$.

From the analysis above, we know that there is only one case in which (4) is incompatible and \mathscr{C} is not central, namely (viii).
Corollary. The conic (1) can only be a parabola if $B^{2}=4 A C$.
Example. Given the conic $x^{2}+4 y^{2}-6 x+8 y=3$, we can locate a centre by completing the squares:

$$
(x-3)^{2}-9+4(y+1)^{2}-4=3 .
$$

Thus $u=3, v=-1$, and the equation becomes

$$
X^{2}+4 Y^{2}=16, \quad \text { or } \quad \frac{X^{2}}{4^{2}}+\frac{Y^{2}}{2^{2}}=1,
$$

which is an ellipse with width twice its height. In general, if the orginal equation has a term in $x y$, one needs to find the centre by solving (4).

L24.2 Central quadrics. One can carry out a parallel discussion in space by adding a third variable.

Definition. A quadric \mathscr{Q} is the locus of points (x, y, z) in \mathbb{R}^{3} satisfying an equation of the form

$$
\begin{equation*}
A x^{2}+B y^{2}+C z^{2}+2 D y z+2 E z x+2 F x y+2 G x+2 H y+2 I z+J=0 . \tag{5}
\end{equation*}
$$

The word 'quadric' implies that (5) has order 2, so not all of A, B, C, D, E, F are zero.
Just as we did for conics in L23.1, one can list all the different types of quadrics; whilst there were 8 types of conics there are 15 types of quadrics. However, we shall only consider the more interesting cases in this course.
Let us start with an obvious example. The equation

$$
x^{2}+y^{2}+z^{2}=r^{2}
$$

fits the definition (with $A=B=C=1, J=-r^{2}$, and all other coefficients zero). It is of course a sphere of radius r with centre the origin. Indeed if $\mathbf{v}=(x, y, z)^{T}$, then the equation becomes $|\mathbf{v}|^{2}=r^{2}$ or $|\mathbf{v}|=r$, and asserts that the distance of (x, y, z) from the origin is r (see L9.1). In the light of the discussion of ellipses, it should now come as no surprise that the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

represents an ellipsoid that fits snugly into a box centred at the orgin of dimension $2 a \times 2 b \times 2 c$.

Definition. A central quadric is the locus of points (x, y, z) satisfying an equation

$$
\begin{equation*}
A x^{2}+B y^{2}+C z^{2}+2 D y z+2 E z x+2 F x y+J=0, \tag{6}
\end{equation*}
$$

or equivalently

$$
\left(\begin{array}{lll}
(& y & z
\end{array}\right)\left(\begin{array}{lll}
A & F & E \\
F & B & D \\
E & D & C
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=-J .
$$

The 3×3 matrix here is symmetric, and we can rewrite the equation as

$$
\mathbf{v}^{\top} S \mathbf{v}=-J, \quad \text { where } \quad \mu=-J .
$$

We know from L21.1 that there exists a 3×3 orthogonal matrix P so that $P^{-1} S P=P^{\top} S P$ is diagonal. We may also suppose that $\operatorname{det} P=1$ (for if $\operatorname{not}, \operatorname{det} P=-1$ and we merely replace P by $-P$ and note that $\operatorname{det}(-P)=1$). It follows from remarks in L 21.3 that P represents a rotation; thus we have the
Theorem. Given a central quadric (6), it is possible to rotate the coordinate system about the origin in space so that in the new system the equation becomes

$$
\begin{equation*}
\lambda_{1} X^{2}+\lambda_{2} Y^{2}+\lambda_{3} Z^{2}=\mu \tag{7}
\end{equation*}
$$

The numbers $\lambda_{1}, \lambda_{1}, \lambda_{3}$ are (in no particular order) the eigenvalues of S.
Here are some examples of central quadrics in which the eigenvalues are all nonzero:
(i) an ellipsoid (if $\lambda_{1}, \lambda_{2}, \lambda_{3}, \mu$ all have the same sign);
(ii) a hyperboloid of one sheet (if for example $\lambda_{1}, \lambda_{2}, \mu$ are positive and $\lambda_{3}<0$);
(iii) a hyperboloid of two sheets (if for example λ_{1}, λ_{2} are negative and λ_{3}, μ are positive),
(iv) a cone (if not all $\lambda_{1}, \lambda_{2}, \lambda_{3}$ have the same sign and if $\mu=0$).

In the last case, the cone is circular if two of the eigenvalues are equal, otherwise it is called elliptic. We shall explain this case further in the next lecture.

L24.3 Paraboloids. In some ways the simplest equation in x, y, z of second order is

$$
z=x y .
$$

This is the equation (5) of a quadric for which all the coefficients are zero except $F=-I$. If we perform a rotation of $\pi / 4$ of the $x y$ plane corresponding to the matrix

$$
P=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)
$$

then we can replace x by $\frac{1}{\sqrt{2}}(X-Y)$ and y by $\frac{1}{\sqrt{2}}(X+Y)$, and leave $z=Z$ alone. Our quadric \mathscr{Q} becomes

$$
z=\frac{1}{2}(X-Y)(X+Y), \quad \text { or } \quad 2 Z=X^{2}-Y^{2} .
$$

This is an example of a hyperbolic paraboloid that resembles a 'saddle' for a horse, or (on a bigger scale) a 'mountain pass'. Any plane $X=c$ or $Y=c$ intersects \mathscr{Q} in a parabola, whereas a plane $Z=c$ intersects \mathscr{Q} in a hyperbola or (if $c=0$) a pair of lines.

Paraboloids are quadrics that cannot be put into the form (6) or (7), and therefore possess no central point of symmetry. The standard form of a paraboloid is the equation

$$
Z=a X^{2}+b Y^{2}
$$

If a, b have opposite signs, it is again a hyperbolic paraboloid. If a, b have the same sign, the quadric is easier to draw and is called an elliptic hyperboloid (circular if $a=b$). Its intersection with the plane $Z=a$ is an ellipse (circle).

L24.4 Further exercises.

1. For each of the following conics, find the centre (u, v) and the equations that results by setting $x=X+u, y=Y+v$: (i) $x^{2}+y^{2}+x=3$, (ii) $3 y^{2}-4 x y-4 x=0$, (ii) $3 x^{2}-x y+2 y=9$.
2. Find the centre (u, v) of the conic $\mathscr{C}: x^{2}+x y+y^{2}-2 x-y=0$, and a symmetric matrix S so that the equation becomes $(X, Y) S\binom{X}{Y}=1$ with $x=X+u, y=Y+v$. Diagonalize S, and sketch \mathscr{C} relative to the original axes (x, y).
3. Let \mathscr{S} be the sphere with centre $(3,1,1)$ passing through $(3,4,5)$. Find the radius of \mathscr{S}, and write down its equation.
4. Let π be the plane $x-2 y+2 z=0$ and let O denote the origin $(0,0,0)$. Find
(i) the line ℓ orthogonal to π that passes through O,
(ii) the point P on ℓ a distance 6 from O with $z>0$;
(iii) a sphere \mathscr{S} of radius 6 tangent to π at O.
5. Match up, in the correct order, the quadrics

$$
x^{2}=3 y^{2}+z^{2}+1, \quad z^{2}=x y, \quad x^{2}+2 y^{2}-z^{2}=1, \quad-x^{2}-y^{2}+2 x+1=0
$$

with (i) a hyperboloid of 1 sheet, (ii) a hyperboloid of 2 sheets, (iii) a cone, (iv) a cylinder.
6. Show that the line ℓ with parametric equation $(x, y, z)=(1,-t, t)$ is contained in the quadric $\mathscr{Q}: x^{2}+y^{2}-z^{2}=1$. Draw \mathscr{Q} and ℓ in the same coordinate system. Find a second line ℓ^{\prime} that lies in \mathscr{Q}.
7. Decide which of the following equations describes the circular cone that is obtained when one rotates the line $\{(x, y, z): x=0, z=2 y\}$ around the z-axis:

$$
x^{2}+4 y^{2}=z^{2}, \quad 4 x^{2}+4 y^{2}-z^{2}=0, \quad 2\left(x^{2}+y^{2}\right)-z^{2}=0, \quad z=4 x^{2}+4 y^{2} .
$$

8. The quadrics $\mathscr{Q}_{1}: z=x^{2}+y^{2}$ and $\mathscr{Q}_{2}: z=x^{2}-y^{2}$ are both examples of paraboloids. Write down the equations of planes $\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}$ parallel to the coordinate planes but such that
(i) $\mathscr{Q}_{1} \cap \pi_{1}$ is a parabola,
(ii) $\mathscr{Q}_{1} \cap \pi_{2}$ is a circle,
(iii) $\mathscr{Q}_{2} \cap \pi_{3}$ is a hyperbola,
(iv) $\mathscr{Q}_{2} \cap \pi_{4}$ is a pair of lines.
