
Notes 22 – Symmetric and Orthogonal Matrices

In this lecture, we focus attention on symmetric matrices, whose eigenvectors can be used
to construct orthogonal matrices. Determinants will then help us to distinguish those or-
thogonal matrices that define rotations.

L22.1 Orthogonal eigenvectors. Recall the definition of the dot or scalar product of two col-
umn vectors v,w ∈ R

n,1 . Without writing out their components, we can nonetheless assert
that

v ·w = v⊤w. (1)

Recall too that a matrix S is symmetric if S⊤ =S (this implies of course that it is square).

Lemma. Let v1, v2 be eigenvectors of a symmetric matrix S corresponding to distinct eigen-
values λ1, λ2 . Then v1 · v2 = 0 .

Proof. First note that

(Sv1) · v2 = (Sv1)
⊤v2 = v⊤ 1S

⊤v2 = v⊤ 1(Sv2) = v1 · (Sv2).

This is true for any vectors v1, v2 , but the assumptions Sv1=λ1v1 and Sv2=λ2v2 tell us that

λ1 v1 · v2 = λ2 v1 · v2,

and the result follows. QED

Example. To begin with the 2 × 2 case, consider the symmetric matrix

A =

(

5 2
2 8

)

.

It is easy to check that its eigenvalues are 9 and 4, and that respective eigenvectors are

v1 =

(

1
2

)

, v2 =

(−2
1

)

.

As predicted by the Lemma, v1 · v2 = 0. Given this fact, we can normalize v1, v2 to manufacture
an orthonormal basis

f1 =
1√
5

(

1
2

)

, f2 =
1√
5

(−2
1

)

of eigenvectors, and use these to define the matrix

P = 1√
5

(

1 −2
2 1

)

.

With this choice,

P⊤P = 1
5

(

1 2
−2 1

)(

1 −2
2 1

)

= 1
5

(

5 0
0 5

)

= I2. (2)

Another way of expressing this relationship is

P−1 = 1√
5

(

1 2
−2 1

)

= P⊤ ,
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and also PP⊤ = I . It is easy to verify that

P−1AP = 1
5

(

1 2
−2 1

)(

5 2
2 8

)(

1 −2
2 1

)

=

(

9 0
0 4

)

.

Definition. A matrix P ∈ R
n,n is called orthogonal if it satisfies one of the equivalent

conditions: (i) P⊤P = In , (ii) PP
⊤ =In , (iii) P is invertible and P−1=P⊤ .

This definition was first given in L9.3 in the context of orthonormal bases. Let us explain
why the three conditions are indeed equivalent. As (1) and (2) make clear, condition (i)
asserts that the columns of P are orthonormal. Condition (ii) assserts that the rows are or-
thonormal. A set {v1, . . . , vn} of orthonormal vectors is necessarily LI since

a1v1 + · · · + anvn = 0

implies (by taking the dot product with each vi in turn) that ai = 0; thus either (i) or (ii)
implies that P is invertible. It follows that both (i) and (ii) are equivalent to (iii).

The relationship between symmetric and orthogonal matrices is cemented by the

Theorem. Let S ∈ R
n,n be a symmetric matrix. Then

(i) the eigenvalues (or roots of the characteristic polynomial p(x)) of S are all real.

(ii) there exists an orthogonalmatrix P such that P−1SP = P⊤SP = D .

Proof. (i) Suppose that λ ∈ C is a root of p(x) . Working over the field C , we can assert that
there exists a complex eigenvector v ∈ C

n,1 satisfying Sv = λv . If v⊤ = (z1, . . . , zn) then the

complex conjugate of this vector is v⊤ = (z1, . . . , zn) and

v⊤v = |z1|2 + · · · + |zn|2 > 0,

since v 6= 0 . Thus

λv⊤v = v⊤ (Sv) = Sv
⊤
v = λv⊤v,

and necessarily λ = λ and λ ∈ R .

In the light of (i), part (ii) follows immediately if all the roots of p(x) are distinct. For each
repeated root λ , one needs to know that mult(λ) = dimEλ ; for if this is true the Lemma
permits us to build up an orthonormal basis of eigenvectors. We shall not prove the mul-
tiplicity statement (that is always true for a symmetric matrix), but a convincing exercise
follows. QED

Exercise. Consider again the symmetric matrix

A =





−2 1 1
1 −2 1
1 1 −2



 ,

and its eigenvectors

v1 =





1
1
1



 , v2 =





1
−1
0



 , v3 =





1
0
−1





(found in L18.2), with respective eigenvalues 0 (multiplicity 1) and −3 (multiplicity 2). As

predicted by the Lemma, v1 ·v2 = 0 = v1 ·v3 . Observe however that v2 ·v3 6= 0; show nonetheless

that there exists an eigenvector v′3 with eigenvalue 3 such that v2 ·v′3 = 0. Normalize the vectors

v1, v2, v
′
3 so as to obtain an orthogonal matrix P for which P−1AP is diagonal. Compute the

determinant of P ; can the latter be chosen so that detP = 1?
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L22.2 Rotations in the plane. We proceed to classify 2 × 2 orthogonal matrices. Suppose
that

P =

(

p q
r s

)

is orthogonal, so that both columns are mutually orthogonal unit vectors. The only two unit

vectors orthogonal to
(

p
r

)

are
(−r

p

)

and
(

r
−p

)

, so one of these must equal
(

q
s

)

. This

gives us two possibilities:

P =

(

p −r
r p

)

or P =

(

p r
r −p

)

.

Since p2 + r2 = 1, the first matrix has determinant 1 and the second −1.
Let us focus attention on the first case. There exists a unique angle θ such that cosθ = p
and sin θ = r . We denote the resulting matrix P by

Rθ =

(

cos θ − sin θ
sin θ cos θ

)

, (3)

to emphasize that it is a function of θ . Observe that

Rθ

(

x
y

)

=

(

x cos θ − y sin θ
x sin θ + y cos θ

)

.

The right-hand side is the image of the vector
(

x
y

)

under a rotation about the origin by an

angle θ . To summarize:

Proposition. Any 2 × 2 orthogonal matrix with determinant 1 has the form (3), and repre-
sents a rotation in R

2 by an angle θ anti-clockwise, with centre the origin.

Exercise. Use standard trigonometric identities to verify that

RθRφ = Rθ+φ.

Deduce that R2θ = (Rθ)
2 and R−θ = (Rθ)

−1 .

We next extend some of these results to bigger orthogonal matrices.

L22.3 Properties of orthogonal matrices. Recall that (AB)T =BTAT is always true.

Lemma. If A,B are orthogonal matrices of the same size, then A−1 and AB are also orthog-
onal.

Proof. Suppose that A⊤A = I and B⊤B = I . Then A⊤ = A−1 ; this implies that

(A−1)⊤ = A, and so (A−1)⊤A−1 = I,

so A−1 is orthogonal. Moreover,

(AB)⊤ (AB) = B⊤A⊤AB = B⊤ IB = B⊤B = I,
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as required. QED

In order to compute the determinant of an orthogonal matrix, we need the following funda-
mental result that we quote without proof.

Binet’s Theorem. If A,B are square matrices of the same size, then

det(AB)=(detA)(detB).

Suppose that P⊤P = I . Then

1 = det I = det(P⊤P) = det(P⊤ )detP = (detP)2,

since det(P⊤ )=detP .

Corollary. Any orthogonal matrix has determinant equal to 1 or −1 .

Example. Suppose that P is an orthogonal matrix with detP = 1. Then

det(P − I) = det(P⊤ )det(P − I) = det
(

(P⊤ )(P − I)
)

= det
(

P⊤P − P⊤ )

= det(I − P⊤ )

= det
(

(I − P)⊤
)

= det(I − P) = (−1)n det(P − I).

If n is odd, it follows that det(P−I)=0, so 1 is a root of the characteristic polynomial. Therefore

1 is an eigenvalue of P , and there exists v ∈ R
3,1 such that Pv = v (and v 6= 0).

This example can be used to show that any 3 × 3 orthogonal matrix P with detP = 1
represents a rotation of R

3 about an axis passing through the origin. For given such a
rotation, one can choose an orthonormal basis {v1, v2, v3} of R

3 such that v3 points in the
direction of the axis of rotation. It then follows (from an understanding of what is meant by
a rotation of a rigid body in space, and referring to (3)) that the rotation is described by a
linear mapping f :R3 → R

3 whose matrix with respect to the basis is

Mθ =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 .

For example, v 7→ Mθv is itself a rotation about the z-axis.

L22.4 Further exercises.

1. For which values of θ does the rotation matrix (3) have a real eigenvalue?

2. Show that if an n × n matrix S is both symmetric and orthogonal then S2 = I . Deduce
that the eigenvalues of S are 1 or −1.

3. An isometry of R
n is any mapping f : R

n → R
n such that |f(v) − f(w)| = |v − w| for all

v,w ∈ R
n . Show that such a mapping is necessarily injective. Now suppose that v0 ∈ R

n,1

is a fixed vector and that P ∈ R
n,n is an orthogonal matrix. Set g(v) = v0 + Pv . Verify that g

is an isometry; is it surjective?

4. [Uses the complex field C .] Find a matrix Y ∈ C
2,2 for which

(

0 −1
1 0

)

= Y−1
(

i 0
0 −i

)

Y .
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