Notes 21 – Diagonalizability

For an important class of square matrices (or linear transformations of a finite-dimensional vector space), it is possible to choose a *basis* of eigenvectors. We have already seen that this is possible if the characteristic polynomial of $A \in \mathbb{R}^{n,n}$ has distinct real roots. We shall now explain the significance of, and give a more general criterion for, the existence of a basis of eigenvectors. We include a well-known application to the theory of Fibonacci numbers.

L21.1 An example in detail. The following matrix featured in the first exercise of L20.4:

$$A = \begin{pmatrix} 5 & 3 & -3 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix}.$$

One's first observation upon setting eyes on this matrix is that A - I has a row of 0's; it follows that 1 is an eigenvalue of A. Given that

$$\det A = 5.1 - (-3).1 = 8, \qquad \text{tr } A = 5 + 1 + 1 = 7,$$

we may choose the roots $\lambda_1, \lambda_2, \lambda_3$ of $p(x) = \det(A - xI)$ so that

$$\lambda_1 = 1,$$
 $1.\lambda_2\lambda_3 = 8$ $1 + \lambda_2 + \lambda_3 = 7,$

and $\lambda_2 = 2$ and $\lambda_4 = 4$. If required to do so, one can verify directly that

$$p(x) = -(x-1)(x-2)(x-4).$$

Eigenvectors can be found by picking particular solutions of the corresponding linear system:

$$A - I = \begin{pmatrix} 4 & 3 & -3 \\ 0 & 0 & 0 \\ 1 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 \\ 0 & 5 & 3 \\ 0 & 0 & 0 \end{pmatrix} \implies \mathbf{v}_1 = \begin{pmatrix} -6 \\ 3 \\ -5 \end{pmatrix}$$
$$A - 2I = \begin{pmatrix} 3 & 3 & -3 \\ 0 & -1 & 0 \\ 1 & 2 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
$$A - 4I = \begin{pmatrix} 1 & 3 & -3 \\ 0 & -3 & 0 \\ 1 & 2 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \mathbf{v}_3 = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}.$$

Let $f: \mathbb{R}^3 \to \mathbb{R}^3$ denote the linear transformation defined by $f(\mathbf{v}) = A\mathbf{v}$. Instead of using the canonical basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ of \mathbb{R}^3 , we are at liberty to use the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ (these three vectors are obviously LI, though this is also a theoretical consequence of the fact that the corresponding eigenvalues are *distinct*). Whilst the matrix of f with respect to the canonical basis is A, its matrix with respect to the 'new' basis is

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix},$$
 (1)

reflecting the equations

$$A\mathbf{v}_1 = 1\mathbf{v}_1, \qquad A\mathbf{v}_2 = 2\mathbf{v}_1, \qquad A\mathbf{v}_3 = 4\mathbf{v}_3. \tag{2}$$

We shall now make the relationship between the two matrices A and D more explicit.

Let *P* denote the matrix whose columns are the chosen eigenvectors:

$$P = \begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \\ \downarrow & \downarrow & \downarrow \end{pmatrix} = \begin{pmatrix} -6 & | 1 & | 3 \\ 3 & 0 & | 0 \\ -5 & | 1 & | 1 \end{pmatrix}$$

(vertical lines emphasize the column structure of this matrix). In view of (2),

$$AP = \begin{pmatrix} \uparrow & \uparrow & \uparrow \\ A\mathbf{v}_1 & A\mathbf{v}_2 & A\mathbf{v}_3 \\ \downarrow & \downarrow & \downarrow \end{pmatrix} = \begin{pmatrix} -6 & 2 & 12 \\ 3 & 0 & 0 \\ -5 & 2 & 4 \end{pmatrix}.$$

We get exactly the same result by multiplying *P* by the diagonal matrix *D* on the *right*:

$$PD = \begin{pmatrix} -6 & | 1 & | 3 \\ 3 & | 0 & | 0 \\ -5 & | 1 & | 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix} = \begin{pmatrix} -6 & | 2 & | 12 \\ 3 & | 0 & | 0 \\ -5 & | 2 & | 4 \end{pmatrix}.$$

In conclusion,

$$AP = PD.$$

Since the columns of *P* are LI, *P* has rank 3 and is invertible. One can therefore assert (without the need to actually compute P^{-1}) that

$$P^{-1}AP = D$$
, or $A = PDP^{-1}$.

To further make sense of these equations, we record the

Definition. (*i*) Two matrices $A, B \in \mathbb{R}^{n,n}$ are said to be similar if there exists an invertible matrix P such that $A = PBP^{-1}$.

(ii) A matrix $A \in \mathbb{R}^{n,n}$ is said to be diagonalizable if it is similar to a diagonal matrix.

The property of 'being similar to' is an *equivalence relation* on the set $\mathbb{R}^{n,n}$ (refer to L4.3). The 3×3 matrix *A* of our example is similar to (1), and therefore diagonalizable.

 $\mathfrak{Marning}$. We have chosen to apply these definitions strictly within the field \mathbb{R} of real numbers. One is free to treat A, B as elements of $\mathbb{C}^{n,n}$ and ask whether $A = PBP^{-1}$ with $P \in \mathbb{C}^{n,n}$. This is an easier condition to satisfy, and leads to a more general concept of similarity and diagonalizability, but one that we shall ignore in this course.

L21.2 A criterion for diagonalizability. We explain the construction in L20.1 in a more general context. Suppose that $A \in \mathbb{R}^{n,n}$ possesses two eigenvectors $\mathbf{v}_1, \mathbf{v}_2$, with corresponding eigenvalues λ_1, λ_2 that may or may not be distinct. Consider the matrix

$$X = \begin{pmatrix} \uparrow & \uparrow \\ \mathbf{v}_1 & \mathbf{v}_2 \\ \downarrow & \downarrow \end{pmatrix} \in \mathbb{R}^{n,2}$$

whose two columns are the chosen eigenvectors. Arguing as before,

$$AX = \begin{pmatrix} \uparrow & \uparrow \\ A\mathbf{v}_1 & A\mathbf{v}_2 \\ \downarrow & \downarrow \end{pmatrix} = \begin{pmatrix} \uparrow & \uparrow \\ \mathbf{v}_1 & \mathbf{v}_2 \\ \downarrow & \downarrow \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = XD,$$

where this time *D* is a diagonal 2×2 matrix.

The last equation is valid even if the two eigenvectors are identical, and we can choose more eigenvectors so as to obtain a matrix X with more columns. But we can only *invert* X if its rank is n, or equivalently if we can find a total of n LI eigenvectors. Hence the

Lemma. A matrix $A \in \mathbb{R}^{n,n}$ is diagonalizable iff there exists a basis of \mathbb{R}^n consisting of eigenvectors of A.

The next result tells us exactly when this is possible.

Theorem. A matrix $A \in \mathbb{R}^{n,n}$ is diagonalizable iff all the roots of p(x) are real, and for each repeated root λ we have

$$\operatorname{mult}(\lambda) = \dim E_{\lambda}.$$
 (3)

Proof. Each eigenvector $\mathbf{v} \in \mathbb{R}^{n,1}$ is associated to a real root λ of p(x), and we already know that the dimension of the eigenspace E_{λ} is *at most* mult(λ). So unless (3) holds for every eigenvalue, it is numerically impossible to find a basis of eigenvectors.

Conversely, suppose that the distinct roots of p(x) are $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$. If k = n the result follows from the Corollary in L19.1; otherwise set $m_i = \text{mult}(\lambda_i)$ and suppose that (3) holds. Pick a basis of each eigenspace E_{λ_i} , and put all these elements together to get a total of $n = m_1 + \cdots + m_k$ eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$. Any linear relation between them can be regrouped into a linear relation

$$a_1\mathbf{w}_1 + \cdots + a_k\mathbf{w}_k = 0$$
, with $a_i \in \mathbb{R}$ and $A\mathbf{w}_i = \lambda_i\mathbf{w}_i$,

in which each \mathbf{w}_i is itself a LC of \mathbf{v} 's if $m_i > 1$. Since the \mathbf{w}_i 's correspond to *distinct* eigenvalues all the coefficients must vanish, and it follows that the \mathbf{v} 's form a basis. QED

Exercise. Verify that the 'anti-diagonal' matrix

$$B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

has characteristic polynomial $-(x-1)^2(x+1)$, and eigenvectors

$$\mathbf{v}_1 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 1\\0\\-1 \end{pmatrix}.$$

Deduce that $mult(1) = 2 = \dim E_1$, and that $P^{-1}BP = D$, where

$$P = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \qquad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

L21.3 An application. The sequence $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... of Fibonacci numbers is defined recursively by the initial values <math>f_0 = 0$, $f_1 = 1$ and the equation

$$f_{n+1} = f_n + f_{n-1}.$$

The latter can be put into matrix form

$$\begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix} = F \begin{pmatrix} f_{n-1} \\ f_n \end{pmatrix} \quad \text{by taking } F = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

The characteristic polynomial of *F* is $x^2 - x - 1 = (x - \lambda_1)(x - \lambda_2)$, where

$$\lambda_1 = \frac{1 + \sqrt{5}}{2}, \qquad \lambda_2 = \frac{1 - \sqrt{5}}{2}$$
 (4)

 $(\lambda_1 = 1.618...$ is the so-called *golden ratio*). It follows that $F = PDP^{-1}$, where

$$P = \begin{pmatrix} 1 & 1 \\ \lambda_1 & \lambda_2 \end{pmatrix}, \qquad D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \qquad P^{-1} = \frac{1}{\lambda_2 - \lambda_1} \begin{pmatrix} \lambda_2 & -1 \\ -\lambda_1 & 1 \end{pmatrix}.$$

Powers of *F* are now easily computed:

$$F^{n} = (PDP^{-1})(PDP^{-1})\cdots(PDP^{-1}) = PD^{n}P^{-1},$$

since all internal pairs $P^{-1}P$ cancel out. It follows that

$$\begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix} = F^n \begin{pmatrix} 0 \\ 1 \end{pmatrix} = PD^n P^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{5}} P \begin{pmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix},$$

and we obtain the celebrated formula

$$f_n = \frac{\lambda_1^n - \lambda_2^n}{\sqrt{5}}$$

for the *n*th Fibonacci number in terms of (4). For large *n*, this is very close to $\lambda_1^n / \sqrt{5}$ (for instance, $\lambda_1^{12} / \sqrt{5} = 144.001..$). Moreover, the ratio f_{n+1}/f_n tends to λ_1 as $n \to \infty$.

L21.4 Further exercises.

1. Which of the following matrices *A* is diagonalizable? Find an invertible matrix $P \in \mathbb{R}^{3,3}$ (if it exists) such that $P^{-1}AP$ is diagonal.

$$\begin{pmatrix} 2 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}, \quad \begin{pmatrix} -2 & 3 & -3 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 0 \\ -1 & 3 & 0 \\ -1 & 4 & -1 \end{pmatrix}.$$

2. Given the matrices

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 2 & 3 & 2 \end{pmatrix}, \qquad B_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \qquad B_2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix},$$

find invertible matrices P_1 and P_2 such that $P_1^{-1}AP_1 = B_1$ and $P_2^{-1}AP_2 = B_2$.

3. Find counterexamples to show that *both* the following assertions are false:

- $A \in \mathbb{R}^{n,n}$ is diagonalizable $\Rightarrow A$ is invertible;
- $A \in \mathbb{R}^{n,n}$ is invertible $\Rightarrow A$ is diagonalizable.

4. Let $A = \begin{pmatrix} -5 & 3 \\ 6 & -2 \end{pmatrix}$. Find a diagonal matrix D and a matrix P such that $A = PDP^{-1}$. If $D = E^3$, check that $A = (PEP^{-1})^3$; hence find a matrix $B \in \mathbb{R}^{2,2}$ such that $A = B^3$.

5. Let $g: \mathbb{R}^{3,3} \to \mathbb{R}^{3,3}$ denote the linear mapping defined by $g(A) = A + A^{\mathsf{T}}$. Use the study of *g* carried out in a previous lecture to find a basis of $\mathbb{R}^{3,3}$ consisting of eigenvectors of *g*. Write down the daigonal 9×9 matrix representing *g* with respect to this basis.

6. Let $c \in \mathbb{R}$. Prove that $A \in \mathbb{R}^{n,n}$ is diagonalizable if and only if A + cI is.