
Notes 21 – Diagonalizability

For an important class of square matrices (or linear transformations of a finite-dimensional
vector space), it is possible to choose a basis of eigenvectors. We have already seen that this
is possible if the characteristic polynomial of A ∈ R

n,n has distinct real roots. We shall now
explain the significance of, and give a more general criterion for, the existence of a basis of
eigenvectors. We include a well-known application to the theory of Fibonacci numbers.

L21.1 An example in detail. The following matrix featured in the first exercise of L20.4:

A =





5 3 −3
0 1 0
1 2 1



 .

One’s first observation upon setting eyes on this matrix is that A − I has a row of 0’s; it
follows that 1 is an eigenvalue of A . Given that

detA = 5.1 − (−3).1 = 8, trA = 5+1+1 = 7,

we may choose the roots λ1, λ2, λ3 of p(x) = det(A − xI) so that

λ1 = 1, 1.λ2λ3 = 8 1 + λ2 + λ3 = 7,

and λ2 = 2 and λ4 = 4. If required to do so, one can verify directly that

p(x) = −(x − 1)(x − 2)(x − 4).

Eigenvectors can be found by picking particular solutions of the corresponding linear sys-
tem:

A − I =





4 3 −3
0 0 0
1 2 0



 ∼





1 2 0
0 5 3
0 0 0



 ⇒ v1 =





−6
3
−5





A − 2I =





3 3 −3
0 −1 0
1 2 −1



 ∼





1 0 −1
0 1 0
0 0 0



 ⇒ v2 =





1
0
1





A − 4I =





1 3 −3
0 −3 0
1 2 −3



 ∼





1 0 −3
0 1 0
0 0 0



 ⇒ v3 =





3
0
1



.

Let f :R3 → R
3 denote the linear transformation defined by f(v) = Av . Instead of using

the canonical basis e1, e2, e3 of R
3 , we are at liberty to use the basis v1, v2, v3 (these three

vectors are obviously LI, though this is also a theoretical consequence of the fact that the
corresponding eigenvalues are distinct). Whilst the matrix of f with respect to the canonical
basis is A , its matrix with respect to the ‘new’ basis is

D =





1 0 0
0 2 0
0 0 4



 , (1)

reflecting the equations

Av1 = 1v1, Av2 = 2v1, Av3 = 4v3. (2)

We shall now make the relationship between the two matrices A and D more explicit.
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Let P denote the matrix whose columns are the chosen eigenvectors:

P =





↑ ↑ ↑
v1 v2 v3
↓ ↓ ↓



 =





−6 1 3
3 0 0
−5 1 1





(vertical lines emphasize the column structure of this matrix). In view of (2),

AP =





↑ ↑ ↑
Av1 Av2 Av3
↓ ↓ ↓



 =





−6 2 12
3 0 0
−5 2 4



 .

We get exactly the same result by multiplying P by the diagonal matrix D on the right:

PD =





−6 1 3
3 0 0
−5 1 1









1 0 0
0 2 0
0 0 4



 =





−6 2 12
3 0 0
−5 2 4



 .

In conclusion,
AP = PD.

Since the columns of P are LI, P has rank 3 and is invertible. One can therefore assert
(without the need to actually compute P−1 ) that

P−1AP = D, or A = PDP−1.

To further make sense of these equations, we record the

Definition. (i) Two matrices A,B ∈ R
n,n are said to be similar if there exists an invertible

matrix P such that A = PBP−1 .

(ii) A matrix A ∈ R
n,n is said to be diagonalizable if it is similar to a diagonal matrix.

The property of ‘being similar to’ is an equivalence relation on the set R
n,n (refer to L4.3). The

3 × 3 matrix A of our example is similar to (1), and therefore diagonalizable.

Warning . We have chosen to apply these definitions strictly within the field R of real num-
bers. One is free to treat A,B as elements of C

n,n and ask whether A = PBP−1 with
P ∈ C

n,n . This is an easier condition to satisfy, and leads to a more general concept of
similarity and diagonalizability, but one that we shall ignore in this course.

L21.2 A criterion for diagonalizability. We explain the construction in L20.1 in a more gen-
eral context. Suppose that A ∈ R

n,n possesses two eigenvectors v1, v2 , with corresponding
eigenvalues λ1, λ2 that may or may not be distinct. Consider the matrix

X =





↑ ↑
v1 v2
↓ ↓



 ∈ R
n,2

whose two columns are the chosen eigenvectors. Arguing as before,

AX =





↑ ↑
Av1 Av2
↓ ↓



 =





↑ ↑
v1 v2
↓ ↓





(

λ1 0
0 λ2

)

= XD,

where this time D is a diagonal 2 × 2 matrix.
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The last equation is valid even if the two eigenvectors are identical, and we can choosemore
eigenvectors so as to obtain a matrix X with more columns. But we can only invert X if its
rank is n , or equivalently if we can find a total of n LI eigenvectors. Hence the

Lemma. A matrix A ∈ R
n,n is diagonalizable iff there exists a basis of R

n consisting of
eigenvectors of A .

The next result tells us exactly when this is possible.

Theorem. A matrix A ∈ R
n,n is diagonalizable iff all the roots of p(x) are real, and for each

repeated root λ we have
mult(λ) = dimEλ. (3)

Proof. Each eigenvector v ∈ R
n,1 is associated to a real root λ of p(x) , and we already know

that the dimension of the eigenspace Eλ is at most mult(λ) . So unless (3) holds for every
eigenvalue, it is numerically impossible to find a basis of eigenvectors.

Conversely, suppose that the distinct roots of p(x) are λ1, . . . , λk ∈ R . If k = n the result
follows from the Corollary in L19.1; otherwise set mi=mult(λi) and suppose that (3) holds.
Pick a basis of each eigenspace Eλi , and put all these elements together to get a total of
n = m1+· · ·+mk eigenvectors v1, . . . , vn . Any linear relation between them can be regrouped
into a linear relation

a1w1 + · · · + akwk = 0, with ai ∈ R and Awi = λiwi,

in which each wi is itself a LC of v ’s if mi > 1. Since the wi ’s correspond to distinct eigen-
values all the coefficients must vanish, and it follows that the v ’s form a basis. QED

Exercise. Verify that the ‘anti-diagonal’ matrix

B =





0 0 1
0 1 0
1 0 0





has characteristic polynomial −(x − 1)2(x + 1) , and eigenvectors

v1 =





0
1
0



 , v2 =





1
0
1



 , v3 =





1
0
−1



 .

Deduce that mult(1) = 2 = dimE1 , and that P−1BP = D , where

P =





0 −1 1
1 0 1
0 1 1



 , D =





1 0 0
0 −1 0
0 0 1



 .

L21.3 An application. The sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . of Fibonacci num-
bers is defined recursively by the initial values f0 = 0, f1 = 1 and the equation

fn+1 = fn + fn−1.

The latter can be put into matrix form
(

fn
fn+1

)

= F
(

fn−1
fn

)

by taking F =

(

0 1
1 1

)

.
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The characteristic polynomial of F is x2 − x − 1 = (x − λ1)(x − λ2) , where

λ1 =
1 +

√
5

2
, λ2 =

1 −
√
5

2
(4)

(λ1 = 1.618.. is the so-called golden ratio). It follows that F = PDP−1 , where

P =

(

1 1
λ1 λ2

)

, D =

(

λ1 0
0 λ2

)

, P−1 =
1

λ2−λ1

(

λ2 −1
−λ1 1

)

.

Powers of F are now easily computed:

Fn = (PDP−1)(PDP−1) · · · (PDP−1) = PDnP−1,

since all internal pairs P−1P cancel out. It follows that
(

fn
fn+1

)

= Fn
(

0
1

)

= PDnP−1
(

0
1

)

= 1√
5
P
(

λ1
n 0
0 λ2

n

)(

1
−1

)

,

and we obtain the celebrated formula

fn =
λ1

n − λ2
n

√
5

for the nth Fibonacci number in terms of (4). For large n , this is very close to λ1
n/
√
5 (for

instance, λ1
12/

√
5=144.001..). Moreover, the ratio fn+1/fn tends to λ1 as n → ∞ .

L21.4 Further exercises.

1. Which of the following matrices A is diagonalizable? Find an invertible matrix P ∈ R
3,3

(if it exists) such that P−1AP is diagonal.




2 1 2
0 0 1
0 1 0



 ,





2 1 1
1 2 1
1 1 2



 ,





−2 3 −3
0 1 0
1 1 2



 ,





1 1 0
−1 3 0
−1 4 −1



 .

2. Given the matrices

A =





1 0 0
1 −1 0
2 3 2



 , B1 =





1 0 0
0 −1 0
0 0 2



 , B2 =





−1 0 0
0 1 0
0 0 2



 ,

find invertible matrices P1 and P2 such that P−1
1 AP1 = B1 and P−1

2 AP2 = B2 .

3. Find counterexamples to show that both the following assertions are false:

A ∈ R
n,n is diagonalizable ⇒ A is invertible;

A ∈ R
n,n is invertible ⇒ A is diagonalizable.

4. Let A =

(

−5 3
6 −2

)

. Find a diagonal matrix D and a matrix P such that A = PDP−1 . If

D = E3 , check that A = (PEP−1)3 ; hence find a matrix B ∈ R
2,2 such that A = B3 .

5. Let g:R3,3 → R
3,3 denote the linear mapping defined by g(A) = A + A⊤ . Use the study

of g carried out in a previous lecture to find a basis of R
3,3 consisting of eigenvectors of g .

Write down the daigonal 9 × 9 matrix representing g with respect to this basis.

6. Let c ∈ R . Prove that A ∈ R
n,n is diagonalizable if and only if A + cI is.
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