Notes 21 - Diagonalizability

For an important class of square matrices (or linear transformations of a finite-dimensional vector space), it is possible to choose a basis of eigenvectors. We have already seen that this is possible if the characteristic polynomial of $A \in \mathbb{R}^{n, n}$ has distinct real roots. We shall now explain the significance of, and give a more general criterion for, the existence of a basis of eigenvectors. We include a well-known application to the theory of Fibonacci numbers.

L21.1 An example in detail. The following matrix featured in the first exercise of L20.4:

$$
A=\left(\begin{array}{ccc}
5 & 3 & -3 \\
0 & 1 & 0 \\
1 & 2 & 1
\end{array}\right)
$$

One's first observation upon setting eyes on this matrix is that $A-I$ has a row of 0 's; it follows that 1 is an eigenvalue of A. Given that

$$
\operatorname{det} A=5.1-(-3) .1=8, \quad \operatorname{tr} A=5+1+1=7,
$$

we may choose the roots $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of $p(x)=\operatorname{det}(A-x I)$ so that

$$
\lambda_{1}=1, \quad 1 . \lambda_{2} \lambda_{3}=8 \quad 1+\lambda_{2}+\lambda_{3}=7,
$$

and $\lambda_{2}=2$ and $\lambda_{4}=4$. If required to do so, one can verify directly that

$$
p(x)=-(x-1)(x-2)(x-4) .
$$

Eigenvectors can be found by picking particular solutions of the corresponding linear system:

$$
\begin{aligned}
& A-I=\left(\begin{array}{ccc}
4 & 3 & -3 \\
0 & 0 & 0 \\
1 & 2 & 0
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 5 & 3 \\
0 & 0 & 0
\end{array}\right) \Rightarrow \mathbf{v}_{1}=\left(\begin{array}{c}
-6 \\
3 \\
-5
\end{array}\right) \\
& A-2 I=\left(\begin{array}{ccc}
3 & 3 & -3 \\
0 & -1 & 0 \\
1 & 2 & -1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \Rightarrow \mathbf{v}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \\
& A-4 I=\left(\begin{array}{ccc}
1 & 3 & -3 \\
0 & -3 & 0 \\
1 & 2 & -3
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \Rightarrow \mathbf{v}_{3}=\left(\begin{array}{l}
3 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ denote the linear transformation defined by $f(\mathbf{v})=A \mathbf{v}$. Instead of using the canonical basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ of \mathbb{R}^{3}, we are at liberty to use the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ (these three vectors are obviously LI , though this is also a theoretical consequence of the fact that the corresponding eigenvalues are distinct). Whilst the matrix of f with respect to the canonical basis is A, its matrix with respect to the 'new' basis is

$$
D=\left(\begin{array}{lll}
1 & 0 & 0 \tag{1}\\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right)
$$

reflecting the equations

$$
\begin{equation*}
A \mathbf{v}_{1}=1 \mathbf{v}_{1}, \quad A \mathbf{v}_{2}=2 \mathbf{v}_{1}, \quad A \mathbf{v}_{3}=4 \mathbf{v}_{3} . \tag{2}
\end{equation*}
$$

We shall now make the relationship between the two matrices A and D more explicit.

Let P denote the matrix whose columns are the chosen eigenvectors:

$$
P=\left(\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \\
\downarrow & \downarrow & \downarrow
\end{array}\right)=\left(\begin{array}{c|c|c}
-6 & 1 & 3 \\
3 & 0 & 0 \\
-5 & 1 & 1
\end{array}\right)
$$

(vertical lines emphasize the column structure of this matrix). In view of (2),

$$
A P=\left(\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
A \mathbf{v}_{1} & A \mathbf{v}_{2} & A \mathbf{v}_{3} \\
\downarrow & \downarrow & \downarrow
\end{array}\right)=\left(\begin{array}{c|c|c}
-6 & 2 & 12 \\
3 & 0 & 0 \\
-5 & 2 & 4
\end{array}\right) .
$$

We get exactly the same result by multiplying P by the diagonal matrix D on the right:

$$
P D=\left(\begin{array}{c|c|c}
-6 & 1 & 3 \\
3 & 0 & 0 \\
-5 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right)=\left(\begin{array}{c|c|c}
-6 & 2 & 12 \\
3 & 0 & 0 \\
-5 & 2 & 4
\end{array}\right) .
$$

In conclusion,

$$
A P=P D .
$$

Since the columns of P are LI, P has rank 3 and is invertible. One can therefore assert (without the need to actually compute P^{-1}) that

$$
P^{-1} A P=D, \quad \text { or } \quad A=P D P^{-1} .
$$

To further make sense of these equations, we record the
Definition. (i) Two matrices $A, B \in \mathbb{R}^{n, n}$ are said to be similar if there exists an invertible matrix P such that $A=P B P^{-1}$.
(ii) A matrix $A \in \mathbb{R}^{n, n}$ is said to be diagonalizable if it is similar to a diagonal matrix.

The property of 'being similar to' is an equivalence relation on the set $\mathbb{R}^{n, n}$ (refer to L4.3). The 3×3 matrix A of our example is similar to (1), and therefore diagonalizable.
$\mathfrak{W} \mathfrak{a r n i n g}$. We have chosen to apply these definitions strictly within the field \mathbb{R} of real numbers. One is free to treat A, B as elements of $\mathbb{C}^{n, n}$ and ask whether $A=P B P^{-1}$ with $P \in \mathbb{C}^{n, n}$. This is an easier condition to satisfy, and leads to a more general concept of similarity and diagonalizability, but one that we shall ignore in this course.

L21.2 A criterion for diagonalizability. We explain the construction in L20.1 in a more general context. Suppose that $A \in \mathbb{R}^{n, n}$ possesses two eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, with corresponding eigenvalues λ_{1}, λ_{2} that may or may not be distinct. Consider the matrix

$$
X=\left(\begin{array}{cc}
\uparrow & \uparrow \\
\mathbf{v}_{1} & \mathbf{v}_{2} \\
\downarrow & \downarrow
\end{array}\right) \in \mathbb{R}^{n, 2}
$$

whose two columns are the chosen eigenvectors. Arguing as before,

$$
A X=\left(\begin{array}{cc}
\uparrow & \uparrow \\
A \mathbf{v}_{1} & A \mathbf{v}_{2} \\
\downarrow & \downarrow
\end{array}\right)=\left(\begin{array}{cc}
\uparrow & \uparrow \\
\mathbf{v}_{1} & \mathbf{v}_{2} \\
\downarrow & \downarrow
\end{array}\right)\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)=X D,
$$

where this time D is a diagonal 2×2 matrix.

The last equation is valid even if the two eigenvectors are identical, and we can choose more eigenvectors so as to obtain a matrix X with more columns. But we can only invert X if its rank is n, or equivalently if we can find a total of n LI eigenvectors. Hence the

Lemma. A matrix $A \in \mathbb{R}^{n, n}$ is diagonalizable iff there exists a basis of \mathbb{R}^{n} consisting of eigenvectors of A.

The next result tells us exactly when this is possible.
Theorem. A matrix $A \in \mathbb{R}^{n, n}$ is diagonalizable iff all the roots of $p(x)$ are real, and for each repeated root λ we have

$$
\begin{equation*}
\operatorname{mult}(\lambda)=\operatorname{dim} E_{\lambda} . \tag{3}
\end{equation*}
$$

Proof. Each eigenvector $\mathbf{v} \in \mathbb{R}^{n, 1}$ is associated to a real root λ of $p(x)$, and we already know that the dimension of the eigenspace $E_{\mathcal{~}}$ is at most mult(λ). So unless (3) holds for every eigenvalue, it is numerically impossible to find a basis of eigenvectors.
Conversely, suppose that the distinct roots of $p(x)$ are $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$. If $k=n$ the result follows from the Corollary in L19.1; otherwise set $m_{i}=\operatorname{mult}\left(\lambda_{i}\right)$ and suppose that (3) holds. Pick a basis of each eigenspace $E_{\lambda_{i}}$, and put all these elements together to get a total of $n=m_{1}+\cdots+m_{k}$ eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. Any linear relation between them can be regrouped into a linear relation

$$
a_{1} \mathbf{w}_{1}+\cdots+a_{k} \mathbf{w}_{k}=0, \quad \text { with } \quad a_{i} \in \mathbb{R} \quad \text { and } \quad A \mathbf{w}_{i}=\lambda_{i} \mathbf{w}_{i},
$$

in which each \mathbf{w}_{i} is itself a LC of \mathbf{v} 's if $m_{i}>1$. Since the \mathbf{w}_{i} 's correspond to distinct eigenvalues all the coefficients must vanish, and it follows that the \mathbf{v} 's form a basis.

QED
Exercise. Verify that the 'anti-diagonal' matrix

$$
B=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

has characteristic polynomial $-(x-1)^{2}(x+1)$, and eigenvectors

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) .
$$

Deduce that $\operatorname{mult}(1)=2=\operatorname{dim} E_{1}$, and that $P^{-1} B P=D$, where

$$
P=\left(\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right), \quad D=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

L21.3 An application. The sequence $0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots$ of Fibonacci numbers is defined recursively by the initial values $f_{0}=0, f_{1}=1$ and the equation

$$
f_{n+1}=f_{n}+f_{n-1} .
$$

The latter can be put into matrix form

$$
\binom{f_{n}}{f_{n+1}}=F\binom{f_{n-1}}{f_{n}} \quad \text { by taking } F=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) .
$$

The characteristic polynomial of F is $x^{2}-x-1=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)$, where

$$
\begin{equation*}
\lambda_{1}=\frac{1+\sqrt{5}}{2}, \quad \lambda_{2}=\frac{1-\sqrt{5}}{2} \tag{4}
\end{equation*}
$$

($\lambda_{1}=1.618$.. is the so-called golden ratio). It follows that $F=P D P^{-1}$, where

$$
P=\left(\begin{array}{cc}
1 & 1 \\
\lambda_{1} & \lambda_{2}
\end{array}\right), \quad D=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right), \quad P^{-1}=\frac{1}{\lambda_{2}-\lambda_{1}}\left(\begin{array}{cc}
\lambda_{2} & -1 \\
-\lambda_{1} & 1
\end{array}\right) .
$$

Powers of F are now easily computed:

$$
F^{n}=\left(P D P^{-1}\right)\left(P D P^{-1}\right) \cdots\left(P D P^{-1}\right)=P D^{n} P^{-1},
$$

since all internal pairs $P^{-1} P$ cancel out. It follows that

$$
\binom{f_{n}}{f_{n+1}}=F^{n}\binom{0}{1}=P D^{n} P^{-1}\binom{0}{1}=\frac{1}{\sqrt{5}} P\left(\begin{array}{cc}
\lambda_{1}^{n} & 0 \\
0 & \lambda_{2}^{n}
\end{array}\right)\binom{1}{-1},
$$

and we obtain the celebrated formula

$$
f_{n}=\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\sqrt{5}}
$$

for the nth Fibonacci number in terms of (4). For large n, this is very close to $\lambda_{1}{ }^{n} / \sqrt{5}$ (for instance, $\lambda_{1}^{12} / \sqrt{5}=144.001$..). Moreover, the ratio f_{n+1} / f_{n} tends to λ_{1} as $n \rightarrow \infty$.

L21.4 Further exercises.

1. Which of the following matrices A is diagonalizable? Find an invertible matrix $P \in \mathbb{R}^{3,3}$ (if it exists) such that $P^{-1} A P$ is diagonal.

$$
\left(\begin{array}{lll}
2 & 1 & 2 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right), \quad\left(\begin{array}{ccc}
-2 & 3 & -3 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 3 & 0 \\
-1 & 4 & -1
\end{array}\right) .
$$

2. Given the matrices

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 0 \\
2 & 3 & 2
\end{array}\right), \quad B_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right), \quad B_{2}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right),
$$

find invertible matrices P_{1} and P_{2} such that $P_{1}^{-1} A P_{1}=B_{1}$ and $P_{2}^{-1} A P_{2}=B_{2}$.
3. Find counterexamples to show that both the following assertions are false:
$A \in \mathbb{R}^{n, n}$ is diagonalizable $\Rightarrow A$ is invertible;
$A \in \mathbb{R}^{n, n}$ is invertible $\Rightarrow A$ is diagonalizable.
4. Let $A=\left(\begin{array}{cc}-5 & 3 \\ 6 & -2\end{array}\right)$. Find a diagonal matrix D and a matrix P such that $A=P D P^{-1}$. If $D=E^{3}$, check that $A=\left(P E P^{-1}\right)^{3}$; hence find a matrix $B \in \mathbb{R}^{2,2}$ such that $A=B^{3}$.
5. Let $g: \mathbb{R}^{3,3} \rightarrow \mathbb{R}^{3,3}$ denote the linear mapping defined by $g(A)=A+A^{\top}$. Use the study of g carried out in a previous lecture to find a basis of $\mathbb{R}^{3,3}$ consisting of eigenvectors of g. Write down the daigonal 9×9 matrix representing g with respect to this basis.
6. Let $c \in \mathbb{R}$. Prove that $A \in \mathbb{R}^{n, n}$ is diagonalizable if and only if $A+c I$ is.

