Notes 21 — Diagonalizability

For an important class of square matrices (or linear transformations of a finite-dimensional
vector space), it is possible to choose a basis of eigenvectors. We have already seen that this
is possible if the characteristic polynomial of A € R™" has distinct real roots. We shall now
explain the significance of, and give a more general criterion for, the existence of a basis of
eigenvectors. We include a well-known application to the theory of Fibonacci numbers.

L21.1 An example in detail. The following matrix featured in the first exercise of L20.4:

5 3 3
A= 01 0 ).

1 2 1
One’s first observation upon setting eyes on this matrix is that A — I has a row of 0’s; it
follows that 1 is an eigenvalue of A. Given that

detA=51-(-3)1=8  trA=5+1+1=7,
we may choose the roots 11, 15,13 of p(x) = det(A — xI) so that
/\121, 1.)L2)L3=8 1+)LZ+)L3=7,

and A, =2 and A4 = 4. If required to do so, one can verify directly that

px) = -(x =1 (x -2)(x - 4).

Eigenvectors can be found by picking particular solutions of the corresponding linear sys-

tem:
4 3 3 1 2 0 -6
A—I=<O 0 0>~<O 5 3> = V1=<3>
1 2 0 0 0 0 -5
3 3 3 1
A—21=<0 -1 0>~<O
1 2 -1 0
1 3 3 1
A—4I=<O -3 0>~<O
1 2 -3 0

Let f :R3 — R3 denote the linear transformation defined by f(v) = Av. Instead of using
the canonical basis e, es, e3 of R3, we are at liberty to use the basis vy, vy, v3 (these three
vectors are obviously LI, though this is also a theoretical consequence of the fact that the
corresponding eigenvalues are distinct). Whilst the matrix of f with respect to the canonical
basis is A, its matrix with respect to the ‘new’ basis is

100
D=(0 2 o), (1)
0 0 4

AV1 = 1V1, AV2 = 2V1, AV3 = 4V3. (2)

[ ) [ )

reflecting the equations

We shall now make the relationship between the two matrices A and D more explicit.
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Let P denote the matrix whose columns are the chosen eigenvectors:

T 1T -6 3
P = Vi Vy V3 = ( 3 0>
Ll -5 1

(vertical lines emphasize the column structure of this matrix). In view of (2),

1
0
1

T T T 61212
AP = AV1 AV2 AV3 = ( 31010 > .
! ! ! 512 4

We get exactly the same result by multiplying P by the diagonal matrix D on the right:

6|13 1 00 -6 212
PD={ 3|0]|0 020])=(3|0]0 ).
5|11 0 0 4 =512 4

In conclusion,
AP = PD.

Since the columns of P are LI, P has rank 3 and is invertible. One can therefore assert
(without the need to actually compute P~!) that
P'AP =D, or A=PDpP.

To further make sense of these equations, we record the

Definition. (i) Two matrices A, B € R™" are said to be similar if there exists an invertible
matrix P such that A = PBP!.

(ii) A matrix A € R™" is said to be diagonalizable if it is similar to a diagonal matrix.

The property of ‘being similar to” is an equivalence relation on the set R™" (refer to L4.3). The
3 x 3 matrix A of our example is similar to (1), and therefore diagonalizable.

Warning. We have chosen to apply these definitions strictly within the field R of real num-
bers. One is free to treat A, B as elements of C™" and ask whether A = PBP~! with
P € C*"". This is an easier condition to satisfy, and leads to a more general concept of
similarity and diagonalizability, but one that we shall ignore in this course.

L21.2 A criterion for diagonalizability. We explain the construction in L20.1 in a more gen-
eral context. Suppose that A € R™" possesses two eigenvectors vi, v, with corresponding
eigenvalues 1, 1, that may or may not be distinct. Consider the matrix

T
X = Vi V2 € Rn’z
I

whose two columns are the chosen eigenvectors. Arguing as before,

AX = AT Y 2 (e ) (0 -
= V1 AV2 = Vi V2 0 1 = XD,
[ [ 2

where this time D is a diagonal 2 x 2 matrix.
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The last equation is valid even if the two eigenvectors are identical, and we can choose more
eigenvectors so as to obtain a matrix X with more columns. But we can only invert X if its
rank is n, or equivalently if we can find a total of n LI eigenvectors. Hence the

Lemma. A matrix A € R"" is diagonalizable iff there exists a basis of R" consisting of
eigenvectors of A.
The next result tells us exactly when this is possible.

Theorem. A matrix A € R™" is diagonalizable iff all the roots of p(x) are real, and for each
repeated root A\ we have
mult(d) = dim Ej. (3)

Proof. Each eigenvector v € R™! is associated to a real root A of p(x), and we already know
that the dimension of the eigenspace E, is at most mult(1). So unless (3) holds for every
eigenvalue, it is numerically impossible to find a basis of eigenvectors.

Conversely, suppose that the distinct roots of p(x) are Ay,...,Ax € R. If k =n the result
follows from the Corollary in L19.1; otherwise set m; =mult(\;) and suppose that (3) holds.
Pick a basis of each eigenspace E,,, and put all these elements together to get a total of
n = mjy+---+my eigenvectors vy, ..., v,. Any linear relation between them can be regrouped
into a linear relation

AW + -+ + AWk = 0, with a; € R and AWi = )Liwi,

in which each w; is itself a LC of v’s if m; > 1. Since the w;’s correspond to distinct eigen-
values all the coefficients must vanish, and it follows that the v’s form a basis. QED

Exercise. Verify that the ‘anti-diagonal” matrix

0 01
B={0 10
1 00

has characteristic polynomial —(x — 1)?(x + 1), and eigenvectors

() () ()

Deduce that mult(1) = 2 = dim E;, and that P"'BP = D, where
0 -1 1 1 0 O
P= 1 0 1), D = 0 -1 0.
0 1 1 0 0 1

L21.3 An application. The sequence 0,1,1,2,3,5,8,13,21,34,55,89,144, ... of Fibonacci num-
bers is defined recursively by the initial values fop =0, f1 =1 and the equation

fn+1 = fn +fn71-

The latter can be put into matrix form

<f]:z1> :F<f}:> by taking F = <(1) })
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The characteristic polynomial of F is x> —x — 1 = (x — A1) (x — \2), where

1++5 A_1—\/5
2 2772

(A1 = 1.618.. is the so-called golden ratio). 1t follows that F = PDP~!, where
/11 /M0 1_1</\2—1>
P=(non) P=(n) e )
Powers of F are now easily computed:

F" = (pDP Yy (PDP)..-(PDP') = PD"P!,

M=

(4)

since all internal pairs P~'P cancel out. It follows that

() =0 () =pore(2) = 5P () ()
and we obtain the celebrated formula
- A - )L2n
= T

for the nth Fibonacci number in terms of (4). For large n, this is very close to A{"/+/5 (for
instance, 1{'?/1/5=144.001..). Moreover, the ratio fn+1/ fn tends to Ay as n — 0.

fn

L21.4 Further exercises.

1. Which of the following matrices A is diagonalizable? Find an invertible matrix P € R33
(if it exists) such that P7'AP is diagonal.

2 1 2 2 11 2 3 3 1 1 0
0 0 1), 12 1], 0 1 0 ), -1 3 0 ).
010 1 1 2 1 1 2 -1 4 4

2. Given the matrices

1 0 0 1 0 0 -1 0 0
A=(1 a2 0), B=(0 1 0), B,=( 0 1 0],
2 3 2 0 0 2 0 0 2
find invertible matrices P; and P, such that P; AP, = B; and Py AP, = B,.

3. Find counterexamples to show that both the following assertions are false:
A € R™" is diagonalizable = A is invertible;
A € R™" is invertible = A is diagonalizable.

4. Let A = <_65 i) . Find a diagonal matrix D and a matrix P such that A = PDP!. If

D = E3, check that A = (PEP!)3; hence find a matrix B € R>? such that A = B>.

5. Let g:R** — R¥? denote the linear mapping defined by g(A) = A + AT. Use the study
of ¢ carried out in a previous lecture to find a basis of R>? consisting of eigenvectors of g.
Write down the daigonal 9 x 9 matrix representing g with respect to this basis.

6. Let c € R. Prove that A € R™" is diagonalizable if and only if A +cI is.
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