
Notes 20 – Eigenspaces and Multiplicities

In this lecture, we shall explain how to computemethodically all the eigenvectors associated
to a given square matrix.

L20.1 Subspaces generated by eigenvectors. Given A ∈ R
n,n , consider its characteristic

polynomial
p(x) = det(A − xI).

We know that this polynomial has degree n , and its roots are precisely the eigenvalues of
A : a real number λ satisfies p(λ) = 0 iff there exists a nonnull column vector v ∈ R

n,1 such
that Av = λv .

Definition. If λ is an eigenvalue, the subspace

Eλ = ker(A − λI) = {v ∈ R
n,1 : Av = λv}

of R
n is called the eigenspace associated to λ .

Warning : Not quite all the elements of Eλ are eigenvectors, since (being a subspace) Eλ

also includes the null vector 0 that is not counted as an eigenvector.

The dimension of Eλ satisfies

n − dimEλ = r(A − λI),

by the Rank-Nullity Theorem or (RC2).

Example. The matrix A =

(−6 9
−4 7

)

has characteristic polynomial

p(x) = (−6 − x)(7 − x) + 36 = x2 − x − 6 = (x + 2)(x − 3).

The roots are λ1 = −2 and λ2 = 3, and we consider one at a time. Firstly,

A − λ1I = A + 2I =

(−4 9
−4 9

)

∼
(

1 − 9
4

0 0

)

.

As predicted (by the very fact that −2 is an eigenvalue), this matrix has rank less than 2. It is
easy to find a nonnull vector in Ker(A + 2I) , namely

( 9
4
1

)

or

(
9
4

)

, whence E−2 = L

{( 9
4

)}

.

Similarly,

A − λ2I = A − 3I =

(−9 9
−4 4

)

∼
(

1 −1
0 0

)

, and E3 = L

{( 1
1

)}

.

Although the previous example only has n = 2, it illustrates an important technique: that
of selecting an eigenvector for each eigenvalue.

The next result is fairly obvious for k = 2, and we prove it in another special case.
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Proposition. Suppose that v1, . . . , vk are eigenvectors of A associated to distinct eigenval-
ues λ1, . . . , λk . Then v1, . . . , vk are LI.

Proof. To give the general idea, we take k = 3 (which, for the conclusion to be valid, means
that the vectors lie in R

n with n > 3) and λ1 = 1, λ2 = 2, λ3 = 3. Suppose that

0 = a1v1 + a2v2 + a3v3. (1)

Applying A (or rather its associated linear mapping) gives

0 = a1Av1 + a2Av2 + a3Av3 = a1v1 + 2a2v2 + 3a3v3,

and subtracting (1),
0 = a2v2 + 2a3v3. (2)

Applying A again,
0 = a2Av2 + 2a3Av3 = 2a2v2 + 6a3v3.

Substracting twice (2) gives a3 = 0, since the eigenvector v3 is necessarily nonnull. Return-
ing to (2) we get a2 = 0, and finally a1 = 0 from (1). Thus, there is no non-trivial linear
relation between the three eigenvectors, and they are LI. QED

Recall that a total of n LI vectors in the vector space R
n automatically forms a basis.

Corollary. Suppose that the characteristic polynomial of a matrix A ∈ R
n,n has n distinct

real roots. Then R
n has a basis consisting of eigenvectors of A .

We shall see in the next lecture that the Corollary’s conclusionmeans that A is what is called
diagonalizable: in many ways A behaves as if it were a diagonal matrix.

L20.2 Repeated roots. Greater difficulties can arise when a root of p(x) is not simple.

Definition. We define the multiplicity, written mult(λ) , of a root λ of the characteristic
polynomial p(x) of A ∈ R

n,n to be the power of the factor x − λ that occurs in p(x) .

Example. We spotted some eigenvectors of the matrix

A =




−2 1 1
1 −2 1
1 1 −2





in the previous lecture. Its characteristic polynomial is

p(x) = (−2 − x)
[
(−2 − x)(−2 − x) − 1

]
−
[
− 3 − x

]
+
[
3 + x

]

= −x3 − 6x2 − 9x = −x(x + 3)2,

whence mult(0) = 1 and mult(−3) = 2. To find the space E−3 generated by the eigenvectors
with eigenvalue −3, consider

A + 3I =




1 1 1
1 1 1
1 1 1



 ∼




1 1 1
0 0 0
0 0 0



 .

This has rank 1, and there is a 2-dimensional space

E−3 =

{



x
y
z



 : x + y + z = 0

}

= L

{



−1
0
1



 ,




−1
1
0




}

of solutions. The fact that dimE−3 = mult(−3) is not entirely a coincidence.
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Theorem. Let λ be an eigenvalue of a square matrix A . Then

1 6 dimEλ 6 mult(λ).

Proof. The first inequality is obvious: the fact that λ is an eigenvaluemeans that Eλ contains
a nonzero vector v .

To prove the second inequality one needs to knowmore about the characteristic polynomial,
but we can justify it in the special case that the remaining roots of p(x) are real and distinct.
Let A ∈ R

n,n , m = mult(λ) . Suppose (for a contradiction) that dimEλ > m , so that we
can pick LI vectors v1, . . . , vm+1 in Eλ , as well as LI eigenvectors w1, . . . ,wn−m , one for each
remaining eigenvalue. The resulting total of n + 1 vectors in R

n cannot be LI, so there is a
non-trivial linear relation

a1v1 + · · · + am+1vm+1
︸ ︷︷ ︸

v

+b1w1 + · · · + bn−mwn−m = 0.

But one way or another this contradicts the Proposition: the sum v is nonnull since the w ’s
are LI, and is itself an eigenvector with eigenvalue λ different from the others. QED

Exercise. (i) Write down a diagonal matrix A ∈ R
4,4 such that the charactristic polynomial of A

equals (x − 1)2(x + 2)2 .

(ii) Verify that A has dimE1 = 2 and dimE−2 = 2.

(iii) Let B be the matrix obtained from A by changing its entry in row 1, column 2 from 0 to 1.

Compute dimE1 and dimE−2 for B .

(iv) Find a matrix C with the same characteristic polynomial (x − 1)2(x + 2)2 but for which

dimE1 = 1 = dimE−2 .

In the light of the Theorem, some authors call

mult(λ) the algebraic multiplicity of λ , and dim(Eλ) the geometric multiplicity of λ .

The latter can never exceed the former.

L20.3 The 2 × 2 case. Let us analyse the possible eigenspaces of the matrix

A =

(
a b
c d

)

∈ R
2,2.

Its characteristic polynomial p(x) = x2 − (a+d)x + ad − bc has roots

a+d ±
√
(a+d)2 − 4(ad−bc)

2
=
a+d ±

√
∆

2
,

where
∆ = (a−d)2 + 4bc.

Consider the three cases:

(i) If ∆ > 0 then there are distinct real eigenvalues λ1, λ2 so that

p(x) = (x − λ1)(x − λ2), λ1+λ2 = a+d, λ1λ2 = ad+bc.

Any associated pair of eigenvectors will form a basis of R
2 , by the Corollary.
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(ii) If ∆ = 0 there is one eigenvalue λ with mult(λ) = 2. In the subcase that dimEλ = 2,
Eλ = R

2 contains both e1, e2 and

A =

(
λ 0
0 λ

)

= λI, (3)

which means that b = c = 0 and a = d .

(iii) If ∆ < 0 there are no real eigenvalues, though the theory still makes sense when one
passes to the field F = C of complex numbers (see q. 5 below).

An important special case (of (i) or (ii)) is that in which b = c , and A is symmetric: this
implies that ∆ > 0 with equality iff A is given by (3). Actually, one can prove that the
eigenvalues of any real symmetric n × n matrix are always themselves real.

Example. An instance of (ii) with dimEλ = 1 is the matrix N =

(
0 1
0 0

)

that satisfies N2 = 0.

The characteristic polynomial is x2 , so 0 is a repeated eigenvalue. A direct way of seeing that
any eigenvalue must be 0 is to observe that

Nv = λv ⇒ 0 = N2v = N(λv) = λ2v ⇒ λ2 = 0.

Any eigenvector

(
x
y

)

has to satisfy y=0, so E0 = L

{( 1
0

)}

has dimension 1. Similar consid-

erations apply to the matrix N + aI where a 6= 0.

L20.4 Further exercises.

1. For each of the following matrices, find all possible eigenvalues λ ∈ R and describe the
associated eigenspaces Eλ :

(
2 1
1 2

)

,




1 1 2
0 −1 1
0 0 0



 ,




5 3 −3
0 1 0
1 2 1



 ,







1 1 0 2
−1 3 0 0
−1 4 −1 1
−1 4 −1 0





 .

2. Given A =




a 2 a −1
−3 5 −2
−4 4 −1



 with a ∈ R ,

(i) find the value of a for which 1 is an eigenvalue (no need to work out p(x) !).

(ii) is there a value of a for which there are two LI eigenvectors sharing the same eigen-
value?

3. Let p(x) be a polynomial of degree n , and assume that p(λ) = 0. Show that mult(λ) > 2
if and only if p′(λ) = 0.

4. Find a matrix L such that L2 = L but L is neither 0 nor I . What are the eigenvalues of
L? Does the answer depend upon you choice?

5. [Uses the complex field C .] Consider the matrix

M =

(
0 −1
1 0

)

.

(i) Verify that M satisfies M2 + I = 0 and has characteristic polynomial x2 + 1.

(ii) Show that M−iI and M+iI both have rank 1 (in the obvious sense in which this applies
to complex matrices), and find nonnull u, v ∈ C

2 such that Mu = iu and Mv = −iv .
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