Notes 20 - Eigenspaces and Multiplicities

In this lecture, we shall explain how to compute methodically all the eigenvectors associated to a given square matrix.

L20.1 Subspaces generated by eigenvectors. Given $A \in \mathbb{R}^{n, n}$, consider its characteristic polynomial

$$
p(x)=\operatorname{det}(A-x I)
$$

We know that this polynomial has degree n, and its roots are precisely the eigenvalues of A : a real number λ satisfies $p(\lambda)=0$ iff there exists a nonnull column vector $\mathbf{v} \in \mathbb{R}^{n, 1}$ such that $A \mathbf{v}=\lambda \mathbf{v}$.
Definition. If λ is an eigenvalue, the subspace

$$
E_{\lambda}=\operatorname{ker}(A-\lambda I)=\left\{\mathbf{v} \in \mathbb{R}^{n, 1}: A \mathbf{v}=\lambda \mathbf{v}\right\}
$$

of \mathbb{R}^{n} is called the eigenspace associated to λ.
$\mathfrak{W} \mathfrak{W r n i n g}$: Not quite all the elements of $E_{\mathcal{\lambda}}$ are eigenvectors, since (being a subspace) $E_{\mathcal{\lambda}}$ also includes the null vector $\mathbf{0}$ that is not counted as an eigenvector.
The dimension of E_{λ} satisfies

$$
n-\operatorname{dim} E_{\lambda}=r(A-\lambda I),
$$

by the Rank-Nullity Theorem or (RC2).
Example. The matrix $A=\left(\begin{array}{ll}-6 & 9 \\ -4 & 7\end{array}\right)$ has characteristic polynomial

$$
p(x)=(-6-x)(7-x)+36=x^{2}-x-6=(x+2)(x-3) .
$$

The roots are $\lambda_{1}=-2$ and $\lambda_{2}=3$, and we consider one at a time. Firstly,

$$
A-\lambda_{1} I=A+2 I=\left(\begin{array}{ll}
-4 & 9 \\
-4 & 9
\end{array}\right) \sim\left(\begin{array}{cc}
1 & -\frac{9}{4} \\
0 & 0
\end{array}\right) .
$$

As predicted (by the very fact that -2 is an eigenvalue), this matrix has rank less than 2 . It is easy to find a nonnull vector in $\operatorname{Ker}(A+2 I)$, namely

$$
\binom{\frac{9}{4}}{1} \text { or } \quad\binom{9}{4}, \quad \text { whence } \quad E_{-2}=\mathscr{L}\left\{\binom{9}{4}\right\} .
$$

Similarly,

$$
A-\lambda_{2} I=A-3 I=\left(\begin{array}{ll}
-9 & 9 \\
-4 & 4
\end{array}\right) \sim\left(\begin{array}{cc}
\boxed{1} & -1 \\
0 & 0
\end{array}\right), \quad \text { and } \quad E_{3}=\mathscr{L}\left\{\binom{1}{1}\right\} .
$$

Although the previous example only has $n=2$, it illustrates an important technique: that of selecting an eigenvector for each eigenvalue.
The next result is fairly obvious for $k=2$, and we prove it in another special case.

Proposition. Suppose that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are eigenvectors of A associated to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. Then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are LI.

Proof. To give the general idea, we take $k=3$ (which, for the conclusion to be valid, means that the vectors lie in \mathbb{R}^{n} with $n \geqslant 3$) and $\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3$. Suppose that

$$
\begin{equation*}
0=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3} . \tag{1}
\end{equation*}
$$

Applying A (or rather its associated linear mapping) gives

$$
0=a_{1} A \mathbf{v}_{1}+a_{2} A \mathbf{v}_{2}+a_{3} A \mathbf{v}_{3}=a_{1} \mathbf{v}_{1}+2 a_{2} \mathbf{v}_{2}+3 a_{3} \mathbf{v}_{3},
$$

and subtracting (1),

$$
\begin{equation*}
0=a_{2} \mathbf{v}_{2}+2 a_{3} \mathbf{v}_{3} \tag{2}
\end{equation*}
$$

Applying A again,

$$
0=a_{2} A \mathbf{v}_{2}+2 a_{3} A \mathbf{v}_{3}=2 a_{2} \mathbf{v}_{2}+6 a_{3} \mathbf{v}_{3}
$$

Substracting twice (2) gives $a_{3}=0$, since the eigenvector \mathbf{v}_{3} is necessarily nonnull. Returning to (2) we get $a_{2}=0$, and finally $a_{1}=0$ from (1). Thus, there is no non-trivial linear relation between the three eigenvectors, and they are LI.

QED
Recall that a total of n LI vectors in the vector space \mathbb{R}^{n} automatically forms a basis.
Corollary. Suppose that the characteristic polynomial of a matrix $A \in \mathbb{R}^{n, n}$ has n distinct real roots. Then \mathbb{R}^{n} has a basis consisting of eigenvectors of A.

We shall see in the next lecture that the Corollary's conclusion means that A is what is called diagonalizable: in many ways A behaves as if it were a diagonal matrix.

L20.2 Repeated roots. Greater difficulties can arise when a root of $p(x)$ is not simple.
Definition. We define the multiplicity, written mult (λ), of a root λ of the characteristic polynomial $p(x)$ of $A \in \mathbb{R}^{n, n}$ to be the power of the factor $x-\lambda$ that occurs in $p(x)$.

Example. We spotted some eigenvectors of the matrix

$$
A=\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right)
$$

in the previous lecture. Its characteristic polynomial is

$$
\begin{aligned}
p(x) & =(-2-x)[(-2-x)(-2-x)-1]-[-3-x]+[3+x] \\
& =-x^{3}-6 x^{2}-9 x=-x(x+3)^{2},
\end{aligned}
$$

whence $\operatorname{mult}(0)=1$ and $\operatorname{mult}(-3)=2$. To find the space E_{-3} generated by the eigenvectors with eigenvalue -3 , consider

$$
A+3 I=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{ccc}
\boxed{1} & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

This has rank 1 , and there is a 2 -dimensional space

$$
E_{-3}=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right): x+y+z=0\right\}=\mathscr{L}\left\{\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)\right\}
$$

of solutions. The fact that $\operatorname{dim} E_{-3}=\operatorname{mult}(-3)$ is not entirely a coincidence.

Theorem. Let λ be an eigenvalue of a square matrix A. Then

$$
1 \leqslant \operatorname{dim} E_{\lambda} \leqslant \operatorname{mult}(\lambda)
$$

Proof. The first inequality is obvious: the fact that λ is an eigenvalue means that E_{λ} contains a nonzero vector \mathbf{v}.

To prove the second inequality one needs to know more about the characteristic polynomial, but we can justify it in the special case that the remaining roots of $p(x)$ are real and distinct. Let $A \in \mathbb{R}^{n, n}, m=\operatorname{mult}(\lambda)$. Suppose (for a contradiction) that $\operatorname{dim} E_{\lambda}>m$, so that we can pick LI vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m+1}$ in E_{λ}, as well as LI eigenvectors $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n-m}$, one for each remaining eigenvalue. The resulting total of $n+1$ vectors in \mathbb{R}^{n} cannot be LI, so there is a non-trivial linear relation

$$
\underbrace{a_{1} \mathbf{v}_{1}+\cdots+a_{m+1} \mathbf{v}_{m+1}}_{\mathbf{v}}+b_{1} \mathbf{w}_{1}+\cdots+b_{n-m} \mathbf{w}_{n-m}=\mathbf{0} .
$$

But one way or another this contradicts the Proposition: the sum \mathbf{v} is nonnull since the \mathbf{w}^{\prime} s are LI, and is itself an eigenvector with eigenvalue λ different from the others.

QED
Exercise. (i) Write down a diagonal matrix $A \in \mathbb{R}^{4,4}$ such that the charactristic polynomial of A equals $(x-1)^{2}(x+2)^{2}$.
(ii) Verify that A has $\operatorname{dim} E_{1}=2$ and $\operatorname{dim} E_{-2}=2$.
(iii) Let B be the matrix obtained from A by changing its entry in row 1 , column 2 from 0 to 1 . Compute $\operatorname{dim} E_{1}$ and $\operatorname{dim} E_{-2}$ for B.
(iv) Find a matrix C with the same characteristic polynomial $(x-1)^{2}(x+2)^{2}$ but for which $\operatorname{dim} E_{1}=1=\operatorname{dim} E_{-2}$.

In the light of the Theorem, some authors call
$\operatorname{mult}(\lambda)$ the algebraic multiplicity of λ, and $\operatorname{dim}\left(E_{\lambda}\right)$ the geometric multiplicity of λ.
The latter can never exceed the former.

L20.3 The 2×2 case. Let us analyse the possible eigenspaces of the matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{R}^{2,2}
$$

Its characteristic polynomial $p(x)=x^{2}-(a+d) x+a d-b c$ has roots

$$
\frac{a+d \pm \sqrt{(a+d)^{2}-4(a d-b c)}}{2}=\frac{a+d \pm \sqrt{\Delta}}{2}
$$

where

$$
\Delta=(a-d)^{2}+4 b c .
$$

Consider the three cases:
(i) If $\Delta>0$ then there are distinct real eigenvalues λ_{1}, λ_{2} so that

$$
p(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right), \quad \lambda_{1}+\lambda_{2}=a+d, \quad \lambda_{1} \lambda_{2}=a d+b c .
$$

Any associated pair of eigenvectors will form a basis of \mathbb{R}^{2}, by the Corollary.
(ii) If $\Delta=0$ there is one eigenvalue λ with $\operatorname{mult}(\lambda)=2$. In the subcase that $\operatorname{dim} E_{\lambda}=2$, $E_{\lambda}=\mathbb{R}^{2}$ contains both $\mathbf{e}_{1}, \mathbf{e}_{2}$ and

$$
A=\left(\begin{array}{ll}
\lambda & 0 \tag{3}\\
0 & \lambda
\end{array}\right)=\lambda I,
$$

which means that $b=c=0$ and $a=d$.
(iii) If $\Delta<0$ there are no real eigenvalues, though the theory still makes sense when one passes to the field $F=\mathbb{C}$ of complex numbers (see q. 5 below).
An important special case (of (i) or (ii)) is that in which $b=c$, and A is symmetric: this implies that $\Delta \geqslant 0$ with equality iff A is given by (3). Actually, one can prove that the eigenvalues of any real symmetric $n \times n$ matrix are always themselves real.

Example. An instance of (ii) with $\operatorname{dim} E_{\lambda}=1$ is the matrix $N=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ that satisfies $N^{2}=0$. The characteristic polynomial is x^{2}, so 0 is a repeated eigenvalue. A direct way of seeing that any eigenvalue must be 0 is to observe that

$$
N \mathbf{v}=\lambda \mathbf{v} \Rightarrow \mathbf{0}=N^{2} \mathbf{v}=N(\lambda \mathbf{v})=\lambda^{2} \mathbf{v} \quad \Rightarrow \quad \lambda^{2}=0 .
$$

Any eigenvector $\binom{x}{y}$ has to satisfy $y=0$, so $E_{0}=\mathscr{L}\left\{\binom{1}{0}\right\}$ has dimension 1 . Similar considerations apply to the matrix $N+a I$ where $a \neq 0$.

L20.4 Further exercises.

1. For each of the following matrices, find all possible eigenvalues $\lambda \in \mathbb{R}$ and describe the associated eigenspaces E_{λ} :

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 1 & 2 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
5 & 3 & -3 \\
0 & 1 & 0 \\
1 & 2 & 1
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 1 & 0 & 2 \\
-1 & 3 & 0 & 0 \\
-1 & 4 & -1 & 1 \\
-1 & 4 & -1 & 0
\end{array}\right) .
$$

2. Given $A=\left(\begin{array}{ccc}a & 2 & a-1 \\ -3 & 5 & -2 \\ -4 & 4 & -1\end{array}\right)$ with $a \in \mathbb{R}$,
(i) find the value of a for which 1 is an eigenvalue (no need to work out $p(x)$!).
(ii) is there a value of a for which there are two LI eigenvectors sharing the same eigenvalue?
3. Let $p(x)$ be a polynomial of degree n, and assume that $p(\lambda)=0$. Show that $\operatorname{mult}(\lambda) \geqslant 2$ if and only if $p^{\prime}(\lambda)=0$.
4. Find a matrix L such that $L^{2}=L$ but L is neither 0 nor I. What are the eigenvalues of L ? Does the answer depend upon you choice?
5. [Uses the complex field \mathbb{C}.] Consider the matrix

$$
M=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

(i) Verify that M satisfies $M^{2}+I=0$ and has characteristic polynomial $x^{2}+1$.
(ii) Show that $M-i I$ and $M+i I$ both have rank 1 (in the obvious sense in which this applies to complex matrices), and find nonnull $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{2}$ such that $M \mathbf{u}=i \mathbf{u}$ and $M \mathbf{v}=-i \mathbf{v}$.

