
Notes 2 – Square matrices and determinants

The study of square matrices is particularly rich, since ones of the same size can be mul-
tiplied together repeatedly. This realization will lead us to construct inverse matrices and
define a number called the ‘determinant’ of a square matrix.

L2.1 Identity matrices. Recall that a matrix is said to be square if it has the same number of
rows and columns. So A ∈ R

m,n is square iff m = n .

Definition. A square matrix is diagonal if the only entries aij that are nonzero are those for
which i = j . These form the diagonal ց from top left to bottom right. The n × n matrix A
for which

aij =

{
1, i = j
0, i 6= j

is called the identity matrix of order n , and is denoted In .

It is easy to verify the

Proposition. If A ∈ R
m,n then ImA = A = AIn .

Here is an example:

(
1 0
0 1

)(
a11 a12 a13

a21 a22 a23

)
=

(
a11 a12 a13

a21 a22 a23

)
=

(
a11 a12 a13

a21 a22 a23

)


1 0 0
0 1 0
0 0 1




If A,B ∈ R
n,n then both AB and BA are defined and have size n×n . In general they are

unequal, so matrix multiplication is not commutative.

Exercise. Try A =

(
0 1
0 0

)
and B = A⊤ .

L2.2 Powers of matrices. We can raise a square matrix to any positive power. For example
A2 simply means AA , and

A3 = AAA = A2A = AA2.

An important property of powers of a given matrix is that they commute with one another,
i.e. the order of multiplication does not matter (unlike for general pairs of matrices):

AmAn = AmAn, m, n ∈ N. (1)

By convention, for a matrix A ∈ R
n,n , we set A0 = In . We can try to define negative powers

using the inverse of a matrix, though this does not always exist. The situation for n = 2 is
described by the

Lemma. Let A=

(
a b
c d

)
. Then there exists B ∈ R

2,2 for which AB = I2 iff ad − bc 6= 0 . In

this case, the same matrix B satisfies BA = I2 .

Proof. The recipe is well known:

B =
1

ad − bc

(
d −b
−c a

)
. (2)
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Provided ad − bc = 0 this matrix satisfies both the required equations. If ad − bc = 0 then

(
d −b
−c a

)
A = 0 (3)

is the null matrix, and this precludes the existence of a B for which AB = I2 ; multiplying
(3) on the right by B would give a, b, c, d are zero, impossible. QED

If ad − bc 6= 0, then (2) is called the inverse of A and denoted A−1 . More generally, a square
matrix A ∈ R

n,n is said to be invertible or nonsingular if there exists a matrix A−1 such that
AA−1 = In or AA−1 = In . In this case, it is a remarkable fact that there is only one inverse
matrix A−1 and it satisfies both equations.

Exercise. (i) If A is invertible, then so is A⊤ , and (A⊤ )−1 = (A−1)⊤ .

(ii) If A,B are invertible then (AB)−1 = B−1A−1 .

(iii) If A is invertible and n ∈ N then (An)−1 = (A−1)n .

The inverse can be used to help solve equations involving square matrices. For example,
suppose that

AB = C,

where A is an invertible square matrix. Then

B = InB = (A−1A)B = A−1(AB) = A−1C,

and we have solved for B in terms of C .

Example. Let A ∈ R
2,2 . A direct calculation shows that

A2 − (a + d)A + (ad − bc)I2 = 0.

Assuming there exists A−1 such that AA−1 = I2 we obtain

A − (a + d)I2 + (ad − bc)A−1 = 0 ⇒ (ad − bc)A−1 = (a + d)I2 −A.

We get exactly the same expression for A−1 by assuming that A−1A = I2 .

L2.3 Determinants. The quantity ad − bc is called the determinant of the 2×2 matrix A . It
turns out that it is possible to associate to any square matrix A ∈ R

n,n a number called its
determinant, written detA or |A| . This number is a function of the components of A , and
satisfies

Theorem. detA 6= 0 iff A is invertible.

We shall explain this result in Part II of the course, but here we give two ways of computing
the determinant when n = 3. Let

A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 .

Then one copies down the first two columns to form the extended array




a11 a12 a13

a21 a22 a23

a31 a32 a33




a11 a12

a21 a22

a31 a32

.

6



The formula of Sarrus asserts that the determinant of A is the sum of the products of entries
on the three downward diagonals ց minus those on the three upward diagonals ր .

Equivalently,

detA = a11

∣∣∣∣
a22 a23
a32 a33

∣∣∣∣ − a12

∣∣∣∣
a21 a23
a31 a33

∣∣∣∣ + a13

∣∣∣∣
a21 a22
a31 a32

∣∣∣∣ . (4)

The three mini-determinants are constructed from the last two rows of A .

Exercise. Use either of these formulae to prove the following properties for the determinant of

a 3×3 matrix A :

(i) if one row is multiplied by c so is detA ,

(ii) det(cA) = c3 detA ,

(iii) if two rows are swapped then detA changes sign,

(iv) if one rows is a multiple of another then detA = 0,

(v) detA = det(A⊤ ) , so the above statements apply equally to columns.

In order to explain where (4) comes from, let Aij ∈ R
2,2 denote the matrix obtained from A

by deleting its i row and j column. Let Ã denote the matrix with entries

ãij = (−1)i+j det(Aij).




+ − +

− + −

+ − +




In words, it is formed by replacing each entry of A by the determi-
nant of its ‘complementary matrix’ changing sign chess-board style.

Proposition. AÃ⊤ = (detA)In , so if detA 6= 0 is nonzero then A−1 =
1

detA
Ã⊤ .

We shall prove this result after introducing the vector cross product, but note that the right-

hand side of (4) is the top-left entry of AÃ⊤ . he matrix Ã⊤ is called the adjoint or adjugate of
A .

Example. To find the inverse of

A =




1 1 2
3 5 8
13 21 35


 ,

we compute

AÃ = A




7 −1 −2
7 9 −8
−2 −2 2




T

=




1 1 2
3 5 8
13 21 35







7 7 −2
−1 9 −2
−2 −8 2


 = 2I3.

Thus detA = 2 and

A−1 =




7
2

7
2 −1

− 1
2

9
2 −1

−1 −4 1


 .

One can also check that A−1A = I3 .
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L2.4 Further exercises.

1. Compute the following products of matrices:

(
6 0 4
1 −1 1

)


1 1
0 4
−2 2


 ,




1 1
0 4
−2 2




(
6 0 4
1 −1 1

)
.

2. Let A =




1 2 3
1 −1 2
3 2 0


 and B =




6 0 4
1 0 0
3 2 5


 . Compute the following products:

AB, BA, (BA)⊤ , (AB)⊤ , A⊤B⊤ , B⊤A⊤ .

3. Let

A =

(
1 2 3
0 6 9

)
, B =




a b
0 c
0 0


 .

Find a, b, c so that AB = I2 . Does there exist a matrix C such that CA = I3 ?

4. The matrices A =

(
a b
c d

)
, E =

(
0 1
0 0

)
satisfy the equations AE = EA , AE⊤ = E⊤A .

Deduce that A = aI2 .

5. Give examples of matrices A,B,C ∈ R
2,2 for which

(i) A2 = 0 and A 6= 0,

(ii) B2 = B and B 6= I2 ,

(iii) C2 + 2C + I2 = 0.

6. Find the inverses of the following matrices:

(
1 2
2 −1

)
,




1 2 3
0 1 2
−1 4 0


 ,




1 2 1 1
2 1 0 0
0 1 1 3
3 2 1 1


 .

For the last one, you will need to generalize the chess-board method.

7. Let A =




5 0 −1
0 5 1
−1 1 4


 and P =




1 1 −1
−1 1 1
2 0 1


 . Compute the following matrices:

AP, P−1, D = P−1AP, PD, AD.
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