
Notes 18 – Eigenvectors and Eigenvalues

L18.1 Eigenvectors of a linear transformation. Consider a linear mapping

f :V → V,

where V is a vector space with field of scalars F .

Definition. A nonzero element v ∈ V is called an eigenvector of f if there exists λ (possibly
0) in F such that

f(v) = λv. (1)

In these circumstances, λ is called the eigenvalue associated to v .

Warning : Since f(0) = 0 , it is obvious that the null vector satisfies (1). But the null vector
does NOT count as an eigenvector; for one thing its eigenvalue λ is undetermined. On the
the hand, observe that if v is an eigenvector of f and a 6= 0 then av is also an eigenvector
(with the same eigenvalue).

Example. Here are two extreme cases:

(i) Suppose f is the identity mapping, so that f(v) = v for all v ∈ V . This is obviously linear,

and every nonnull vector v ∈ V is an eigenvector with eigenvalue 1.

(ii) Define g(v) = 0 for every v ∈ V (the ‘null’ transformation, linear by default). Once again,

every nonnull v ∈ V is an eigenvector, but this time with common eigenvalue 0.

More interesting examples of eigenvectors can easily be written down if there is a basis of
the vector space V at one’s disposal:

Example. (i) Take V = R
2 and define a linear mapping f :R2 → R

2 by

f(e1) = e1, f(e2) = −e2.

By this very definition, e1 and e2 are eigenvectors with eigenvalues 1 and −1. Geometrically,
f is a reflection in the x -axis, and any reflection in the plane will have two such eigenvectors.

(ii) Suppose that V has dimension 4 and a basis {v1, v2, v3, v4} . We are at liberty to define

f(v1) = v2, f(v2) = v3, f(v3) = v4, f(v4) = v1,

and this uniquely determines the linear mapping f :V → V for which

v1 + v2 + v3 + v4, v1 − v2 + v3 − v4

are eigenvectors with respective eigenvalues 1 and −1.

To show that bases are not essential for the existence of eigenvectors, here is an example in
which the vector space is not finite-dimensional:

Exercise. Let V be the vector space of functions φ:R → R that admit derivatives of all orders.
Then the mapping D:V → V given by

D(φ) = φ′, where φ′(x) =
dφ

dx
,

is linear. Find all the eigenvectors (or rather, ‘eigenfunctions’) of D .
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L18.2 Eigenvectors of a square matrix. Suppose that V is a vector space of finite dimension
n with F = R (we shall only consider this case from now on). Once we have chosen a basis
of V (any one will have n elements), we know that we can treat V as if it were R

n . For this
reason, we need only study linear mappings f :Rn → R

n , any one of which is given by

f(v) = Av,

where A ∈ R
n,n is a square matrix.

Accordingly, an eigenvector of the matrix A is a nonzero column vector v such that

Av = λv. (2)

In some lucky cases, one can find such vectors by inspection.

Example. Consider the matrix

A =





−2 1 1
1 −2 1
1 1 −2



 .

It is easy to spot the eigenvector





1
1
1



 , with eigenvalue 0.

It is a little less obvious, but nonetheless true, that





1
−1
0



 ,





1
0
−1



 ,





0
1
−1



 are all eigenvectors with eigenvalue − 3.

However, these three are not linearly independent (the second is the first plus the third). Overall,

in this example, we can find three eigenvectors that are LI. We shall see later that any square

matrix of size n × n has at most n eigenvectors that are LI.

Let A ∈ R
n,n , and let I =In be the identity matrix of the same size. Here is a useful trick:

Lemma. If v is an eigenvector of A with eigenvalue λ , then it is an eigenvector of A + aI
with eigenvalue λ + a .

Proof. Immediate, since (A + aI)v = Av + av = (λ + a)v . QED

Exercise. (i) Find two linearly independent eigenvectors of









1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1









.

Hint: refer to an example on the previous page.

(ii) Let V be a vector space with F = R , and basis {v1, v2} so dimV = 2. A linear mapping

f :V → V is defined by setting f(v1) = v2 and f(v2) = −v1 . Write down the associated matrix

Mf , and show that it has no eigenvector in R
2,1 .
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L18.3 The characteristic polynomial. This is a great tool for detecting eigenvalues.

Lemma. If v is an eigenvector of A with eigenvalue λ then det(A − λI) = 0 . Conversely, if
det(A − λI) = 0 then there exists an eigenvector of A with eigenvalue λ .

Proof. Equation (2) can be rewritten as

(A − λI)v = 0 or equivalently v ∈ Ker(A − λI). (3)

Given a solution v 6= 0 , the nullity of the matrix A − λI will be nonzero. By (RC2) or the
Rank-Nullity Theorem, r(A − λI) < n . Thus, A − λI is not invertible and its determinant is
necessarily 0.

Conversely, det(A − λI) = 0 implies that r(A − λI) < n and Ker(A − λI) contains a nonnull
vector v . The latter satisfies Av = λv . QED

Definition/Proposition. Given A ∈ R
n,n , the function

p(x) = det(A − xI)

is called the characteristic polynomial of the square matrix A . It is indeed a polynomial of
degree n in the variable x .

To appreciate this, observe that the matrix A =

(

a b
c d

)

has characteristic polynomial

p(x) = det
(

a−x b
c d−x

)

= x2 − (a + d)x + ad − bc. (4)

For any square matrix, the constant term of the characteristic polynomial is given by

p(0) = det(A − 0x) = detA.

At the other extreme, the leading term is always (−x)n = (−1)nxn . It is also easy to show
that the coefficient of xn−1 in p(x) equals (−1)n−1 trA , where trA denotes the sum of the
diagonal entries. Warning : Some authors (including Wikipedia) define the characteristic
polynomial to be det(xI −A) ; this is always monic (good!) but attempts to calculate it by
hand are usually fraught with sign errors (bad¡).

The statement ‘λ is an eigenvalue of A ’ means that there exists v 6= 0 satisfying (2). Any
such λ must therefore be a root of p(x) , and a solution of the characteristic equation

p(x) = 0. (5)

Here is an important example:

Lemma. A is itself invertible iff 0 is not an eigenvalue of A .

Proof. A is invertible iff detA 6= 0 iff x = 0 is not a solution of det(A − xI) = 0. QED

Exercise. Give a different proof of the Lemma, avoiding any mention of the determinant and

characteristic polynomial.

71



If A ∈ R
n,n , then (5) can have at most n roots, and there are at most n distinct eigenvalues.

There may be less, as the roots of a polynomial can be repeated, and it is also possible that
pairs of roots occur as complex numbers.

Given A , suppose that λ is a root of the characteristic polynomial, so that p(λ) = 0. From
above, we know that there must exist a nonnull column vector v satisfying (3). We can find
therefore such a v by solving the homogeneous linear system associated to A− λI . This we
shall do in the next lecture (but if you are desperate, do q. 6 below).

Example. We have not spoken much about 4×4 determinants, but these can be expanded along
a row or column into a linear combination of 3 × 3 determinants. Let

A =











x 0 0 s

−1 x 0 r

0 −1 x q

0 0 −1 x + p











.

Expanding down the first column,

detA = x det





x 0 r
−1 x q
0 −1 x + p



 + 1.det





0 0 s
−1 x q
0 −1 x + p



 + 0 + 0

= x
(

x(x(x + p) + q) + 1.r
)

+ s

= x4 + px3 + qx2 + rx + s.

This type of example can be used to show that any polynomial whose leading term is (−x)n is

the characteristic polynomial of some n × n matrix.

L18.4 Further exercises.

1. Every eigenvector of





1 1 1
1 1 1
1 1 1



 is a LC of





0
1
−1



 ,





1
0
−1



 ,





1
−1
0



 . True or false?

2. Given A =





0 2 a
2 1 1
a 1 1



 with a ∈ R , find the values of a for which r(A) = 2. Find the

eigenvalues of A when a = 2.

3. Find all the eigenvalues of the matrices





2 0 0
0 1 8
0 2 1



 ,





2 1 1
1 −2 3
3 4 −1



 ,









1 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 1









,









1 0 0 0
0 0 0 0
0 1 1 0
0 0 0 1









.

4. Try to find twoLI vectors u, v that are eigenvectors of both





0 1 1
1 0 1
1 1 0



 and





0 0 1
0 1 0
1 0 0



 .

5. Given A =

(

a b
c d

)

, verify that A2 − (a+d)A + (ad−bc)I2 is the null matrix.

6. Find all the eigenvectors of the first two matrices in q. 3 by solving appropriate linear
systems (one for each eigenvalue).
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