Notes 17 — Operations on Subspaces

Subspaces of vector spaces (including R") can now be conveniently defined as the kernels
or images of linear mappings between vector spaces. This leads us to discuss their proper-
ties in more detail, and compute their dimensions.

L17.1 Intersections and unions. Let W be any finite-dimensional vector space over a field
F (or, if the student prefers) merely R" with F =R. Let U, V be two subspaces of the fixed
vector space W.

Lemma. (i) The intersection U NV is always a subspace of W'.

(ii) The union U UV is only a subspace of W if U CV or V C U (in which case of course,
itequals V or U ).

Proof. (i) If wi,w, € UNV and a € F then aw; + wy belongs to both U and V by
assumption. This is a combined verification of (LM1) and (LM2).

(ii) If UUV is a subspace, but neither U nor V is contained in the other, then we can choose
ucU\V and ve V\U. By assumption, w=u+v € UUV so w belongs to either U or
V. In the former case, v =w —u € U, contradiction. Latter case, similarly. QED

Re-iterating (i), the intersection of any number of subpsaces is always a subspace. All sub-
spaces contain the null vector 0, so at ‘worst’ this subspace will be {0}.

As for unions, there will always exist a smallest subspace of W containing U U V. Any such
subspace must certainly contain all the vectors

u+v, foranyuel, veV, (1)

by property (S1) of a subspace. But the set of all these simple sums is a subspace:

Definition/Lemma. Let W be a vector space. The sum of two subspaces U,V of W is the
set, denoted U + V, consisting of all the elements in (1). It is a subspace, and is contained
inside any subspace that contains U UV .

Proof. Typical elements of U + V are uj + vi and uy + v, with u; € U and v; € V. Their
sum is
(u1 +V1) + (u2 +V2) = (u1 +u2) + (V1 +V2) e U+ V.
Similarly,
a(u; +v1) = (auy) + (avy) € U+ V.

This is all we need to affirm that U + V is a subspace.

If X is a subspace that contains U U V' then it has to contain all elements u € U and v € V,
and therefore all elements u + v € U + V. It therefore contains U + V. QED
One also says that U + V is the subspace generated by U and V. This actually gives a clearer
idea of its definition.

In practice, U + V' contains any LC of elements drawn from U and V, because such a LC
can always be re-arranged into the form (1). We can also think of U + V as the intersection
of all (typically infinitely many) subspaces containing both U and V.
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Example. Consider the subspaces U = £ {ej, e} and V = Z{e3, e4} of R* Then U +V =R*
because any vector in R* can be expressed as the sum

ajel + arepy + azes + asey = u+v.

-~ -~

ueld veV

This situation is somewhat special, as it is also the case that LINV = {0} . Lots of similar examples
(of sums of two subspaces with zero intersection) can be constructed in any vector space, once
one has a basis to play with.

L17.2 Visualizing subspaces in R? and R?. We can represent the vector space R? by points
of the plane, in which the null vector 0 corresponds to the origin. An arbitrary vector in
R? is represented by the tip of the arrow it defines, placed at the origin. In this way, it is
obvious that any subspace U of R? is either

(i) the origin itself, corresponding to the zero subspace {0},
(ii) any straight line passing through the origin,
(iii) the whole plane, corresponding to R2.

In these cases, the dimension of U is respectively 0,1,2.

If U;, U, are two distinct subspaces of R?, each of dimension 1, they are both represented
by lines containing the origin. One easily sees that

U, nU, = {0} and LI1+L[2=]R2.

The last equality follows because any vector in R? can be expressed as the sum of something
in U7 with something in U;,. (The most obvious case is that in which U; = Z{e;} and
U, = Z{ey} correspond to the two axes and (x,y) = xe; + ye; e Uy + U3.)

We can carry out a similar analysis for subspaces V in R?, representing the latter by points
in space. In this situation, dim V' = 1 again gives rise to a straight line through the origin,
but dimV = 2 gives any plane passing through the origin. If Vj,V, are two such distinct
2-dimensional subspaces (planes through the origin), one easily sees this time that

VinV,=Vs  and  Vi+ V=R,
where V3 is a line (again containing the origin). Note that in this last case,
dim(V1 + V) = dim V; + dim V, — dim(V; N V).

We shall see that this formula holds in general.

L17.3 Dimension counting. Any subspace U is a vector space in its own right and has a
dimension: recall that this equals the number of elements inside any basis of U.

Obvious lemma. If U is a subspace of a vector space (or another subspace) V then dimU <
dim V, with equality iff U = V.

This is true because a basis of U can always be extended until it becomes one of V. To
do this we can use the trick that if vq,..., vy are LI and vy, is not a LC of vy,..., vk, then
Vi,...,Vk, Vis1 are LL In the examples above, a subspace of R? has dimension 2 only if it is
R2. Similarly for dimension 3 in R3.
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Much of the theory of bases and dimension was discovered by Hermann Grassmann, in-
cluding the following result dating from around 1860:

Theorem. Let U,V be two subspaces of a finite-dimensional vector space W . Then

dimU +dimV = dim(U N V) + dim(U + V). (2)

This result is illustrated by the following example (whose method is often used as a proof).
Example. Let W = R®. Consider the two subspaces
U =2 {(x1,x2,Xx3,X4,%5) : 2x1 —xp —x3 = 0 = x4 — 3x5},
V= g{(X1,xZ,X3,X4,X5) X3+ Xy = O} .
We are required to find a basis of R’ that contains both a basis of U and a basis of V. The trick
is to start by finding a basis of U N V. It is easy to see that dimU = 3 and dim V' = 4; this is

because the homogeneous linear systems have rank 2 and 1. Now, a vector v € R belongs to
U NV iff it satisfes all three equations. Since the associated matrix

2 -1 -1 0 0 1] -1 o0 o
A:<0 0 0 1—3>~ 0 0 0
0 0 1 1 0 0 0 0 _3

has rank 3, we deduce that dim(U NV) =5-3 = 2. Indeed, we may take x,=s and x5 =t to be
free variables and obtain (as a row) the general solution

W NIw

v=(3s-3t, s, -3t 3t t).
A basis of U NV consists of
wi=(3,1,0,00), w,=(-3,0,-3,3,1)

(take first s =1, t = 0 and second s =0, t = 1). Extend this basis in any way to

a basis {w, wy, w3} of U, and

a basis {wi, wy, wg, w5} of V, and
Then {w1, wp, w3, wy, ws} will always be LI and thus a basis of R5. There are lots of choices in
this example, but we could take

ws3=(0,-1,1,0,0) (this works since w3 € U but w3 ¢ . {w1,ws}),

ws=(0,0,1,-1,0), w5=(0,0,0,0,1) (note that ws ¢ £ {w1, wy, was}).

In conclusion, U + V = R5, and the required basis is

u
—_—
W5 W1 W3 W3 Wy

Fancy proof of (2). First consider the Cartesian product P = U x V consisting of ordered pairs
(u,v) with u € U and v € V. This can be made into a vector space using the operations

(ug, vy) + (w2, v2) = (ug + up, vi +vp),

a(u,v) = (au, av).
If uy,...,uy, isabasisof U and vy, ..., v, abasis of V, itis easy to verify that

(u1,0), ..., (uy,0), (0,vq), ... ,(0,vy,)
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is a basis of P. Hence, dimP = m + n (P is called the external direct sum of U and V).
Consider the mapping
fiP—=W, f(u,v) =u+v.

One easily checks that (i) f is linear, (ii) the image of f equals U +V, and (iii) the kernel of
f equals {(w,—w) :w e UnNV}. Since the last subspace has the same dimensionas UNV,
the Theorem follows from the Rank-Nullity formula: dim P = dimKer f + dimIm f. QED

Example. Consider two subspaces U = .Z {u,up}, V = Z{vy, vz} of R". There are two com-
peting ways to decide mechanically whether U = V:

(i) Super-reduce the 2 x n matrix with rows uj, uy. Do the same for vi,v,. Then U = V iff
the two super-reduced matrices are identical. (This method works because the super-reduced
version of a matrix is unique.)

(ii) Step-reduce the 4 x n matrix with rows uy, u, vi, v to find its rank p. Then U =V iff p = 2.
(This works because in general p = dim(U + V), whereas U=V iff U+V =U=V )

L17.4 Further exercises.
1. Given the subspaces
U=1{(0,a,b,c):ab,ceR}, V=Apqpr) :pqreR}
of R*, find abasisof eachof U, V,UNV, U+ V.
2. In R®, find a basis for the intersection of the two subspaces

Uy = {(x1,x2,%3,%4,%5) : 2x1 — x2 — x3 = 0 = x4 — 3x5},
Uz = {(xl,xz,xg,x4,x5):2x1—x2+x3+4x4+4x5=0}.

Is it true that U; + U, = R5?
3. Consider the following space of polynomials:
V ={p(x) eR[x] : p(1) =0}.

By the Remainder Theorem, p(x) belongs to V' iff it is divisible by x —1. What is the dimen-
sionof VNR,[x] if n>17?

4. Consider the following subspaces of R’:

Vl = g{(1/3/ _2/2/3)/ (1/4/ _3/4/2)/ (2/3/ _1/ _219)} 12
vV, = 2((1,3,0,2,1), (1,5,-6,6,3), (2,5,3,2,1)} .

Determine the dimensions of Vi, Vo, ViNnV;, Vi + V,.

5. Do the same for

Wi = {(x1,x2,x3,x4,%x5) : 2x1 — X2 —x3 = 0 = x4 — 3x5},
Wa = {(x1,x2,%3,%1,%5) : 3x1 = 3x2 — x4 = 0 = 2x1 — x3 — x3}.

Referring to the previous exercise, find also the dimensions of Vi N W and V, N W,.
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