
Notes 15 – Linear Mappings and Matrices

In this lecture, we turn attention to linear mappings that may be neither surjective nor in-
jective. We show that once bases have been chosen, a linear map is completely determined
by a matrix. This approach provides the first real justification for the definition of matrix
multiplication that we gave in the first lecture.

L15.1 The linear mapping associated to amatrix. First, we point out that any matrix defines
a linear mapping.

Lemma. Amatrix A ∈ R
m,n defines a linear mapping f :Rn → R

m by regarding elements of
R
n as column vectors and setting

f(v) = Av, v ∈ R
n,1.

Proof. The conditions (LM1) and (LM2) are obvious consequences of the rules of matrix
algebra. QED

Our preference for column vectors means that an m × n matrix defines a mapping from R
n

to R
m , so that m,n are ‘swapped over’. Here is an example:

A =

(

0 2 4
3 5 1

)

∈ R
2,3 defines f :R3 → R

2

with

f





1
0
0



 =

(

0
3

)

, f





0
1
0



 =

(

2
5

)

, f





0
0
1



 =

(

4
1

)

.

The j th column of A represents the image of the j th element of the canonical basis of R
n,1 .

This example shows that at times we can use A and f interchangeably. But there is a subtle
difference: in applying f , we are allowed to represent elements of R

n and R
m by row

vectors. Thus it is also legitimate to write

f(1, 0, 0) = (0, 3), f(0, 1, 0) = (2, 5), f(0, 0, 1) = (4, 1),

and more memorably,

f(x1, x2, x3) = (2x2 + 4x3, 3x1 + 5x2 + x3). (1)

The last equation shows us how to pass from the rows of A to the definition of f . It turns
out that any linear mapping f :Rn → R

m has a form analogous to (1), from which we can
construct the rows of an associated matrix.

L15.2 The matrix associated to a linear mapping. Let V,W be vector spaces.

Lemma. Let V be a vector space with basis {v1, . . . , vn} . A linear mapping f :V → W
is completely determined by vectors f(v1), . . . , f(vn) , which (in order to define f ) can be
assigned arbitrarily.
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Proof. Suppose that {v1, . . . , vn} is a basis of V . Then any element v of V can be written in
a uniqueway as a1v1 + · · · + anvn , and

f(v) = f(a1v1 + · · · + anvn) = a1f(v1) + · · · + anf(vn). (2)

Thus, f(v) is determined by the n images f(vi) of the basis elements. Moreover, any choice
of n such vectors allows us to define a linear mapping f by means of (2). QED

We have seen that a matrix determines a linear mapping between vector spaces, namely
from R

n to R
m . The Lemma allows us to go backwards and associate a matrix to any linear

mapping from V to W , once we have chosen bases

{v1, · · · , vn}, {w1, · · · ,wm} (3)

of V and W (we are assuming that dimV = n and dimW = m).

Definition. Let g:V → W be a linear mapping. The matrix of g with respect to the bases
(3) is the matrix B ∈ R

m,n (also written Mg or M(g) if the choice (3) is understood) whose
j th column gives the coefficients of g(vj) in terms of w1, . . . ,wm .

If B = (bij) , then we are asserting that

g(vj) = b1jw1 + · · · + bmjwm =
m
∑

i=1

bijwi, for each j = 1, . . . , n. (4)

By the previous lemma, g is completely determined by B . Warning : In this definition, we
are really thinking of the bases (3) as ordered sets.

To recover our previous correspondence, we need to take V = R
n and W = R

m with their
canonical bases. For let A ∈ R

m,n . If f :Rn → R
m is the linear mapping defined by setting

f(v) = Av and we choose (3) to be the canonical bases, then B = Mf = A .

Example. We are perfectly at liberty to apply the Definition to the same vector space with differ-
ent bases. Let V = W = R2[x] . Choose the basis {1, x+1, (x+1)

2} for V and the basis {1, x, x2}

for W . Let D be the linear mapping defined by differentiation: Dp = p′ . Then the matrix of D
with respect to the chosen bases is

A =





0 1 2
0 0 2
0 0 0



 ;

the null column tells us that D(1) = 0 and the null row tells us that ImD consists of polynomials

of degree no greater than 1.

L15.3 Compositions and products. With the link between linear mappings and matrices
now established, we shall see that composition of matrices corresponds to the product of
matrices. Suppose that B ∈ R

m,n , A ∈ R
n,p , and consider the associated linear mappings

R
m,1 g
←− R

n,1 f
←− R

p,1

defined by f(u) = Au and g(v) = Bv . (It is easier to understand what follows by writing
the mappings from right to left.) The composition g ◦ f is obviously

BAu ← Au ← u,

and is therefore associated to the matrix BA .
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More generally, given vector spaces U,V,W and linear mappings

W
g
←− V

f
←− U, (5)

choose bases for each of U,V,W , and let Mf ,Mg be the associated matrices (the same basis
of V being used for both matrices). Then we state without proof the

Proposition. Let h = g ◦ f be the composition (5). Then Mh = MgMf .

This result is especially useful in the case of a single vector space V of dimension n , and a
linear mapping f :V → V . Such a linear mapping (between the same vector space) is called
a linear transformation or endomorphism. In these circumstances, we can fix the same basis
{v1, . . . , vn} of V , and consider compositions of f with itself:

Example. Define f : R
3 → R

3 by f(e1) = e2 , f(e2) = e3 and f(e3) = e1 . Check that the matrix

A = Mf (taken with respect to the canonical basis {e1, e2, e3}) satisfies A3 = I3 .

L15.4 Nullity and rank. Important examples of subspaces are provided by the

Lemma. Let g:V →W be a linear mapping. Then

(i) g−1(0) is a subspace of V ,

(ii) Img is a subspace of W .

Proof. We shall only prove (ii). If w1,w2 ∈ Img then we may write w1 = g(v1) and
w2 = g(v2) for some v1, v2 ∈ V . If a ∈ F then

aw1 +w2 = ag(v1) + g(v2) = g(av1 + v2),

and so aw1 +w2 ∈ Img . Part (i) is similar. QED

Example. In the case of a linear mapping f :Rn → R
m defined by f(v) = Av with A ∈ R

m,n ,

f−1(0) = {v ∈ R
n,1 : Av = 0}

is the solution space of the homogeneous linear system Ax = 0 . We already know that this is
a subspace and we labelled it KerA . On the other hand, the image of f is generated by the
vectors f(ei) that are the columns of A :

Im f = L
{

f(e1), . . . , f(en)
}

= L {c1 . . . , cn} = ColA.

It follows that the dimension of Im f equals the rank, r(A) , the common dimension of RowA

and ColA .

In view of this key example, we state the

Definition. (i) The kernel of an arbitrary linear mapping g:V →W is the subspace g−1(0) ,
more usually written Ker g or kerg . Its dimension is called the nullity of g .

(ii) The dimension of Img is called the rank of g .

Rank-Nullity Theorem. Given an arbitrary linear mapping g:V →W ,

dimV = dim(Ker g) + dim(Im g).

This important result can also be expressed in the form

nullity(g) + rank(g) = n,

n being the dimension of the space of ‘departure’.
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Proof. By choosing bases for V and W , we may effectively replace g by a linear mapping
f :Rn → R

m . But in this case, the previous example shows that Kerf = KerA and Im f =

ColA . We know that dim(ColA) = dim(RowA) = r(A) , and (essentialy by (RC2)),

dim(KerA) = n − r(A).

The result follows. QED

The following result is for class discussion:

Corollary. Given a linear mapping g:V →W with dimV = n and dimW = m ,

g is injective ⇔ rank(g) = n

g is surjective ⇔ rank(g) = m

g is bijective ⇔ rank(g) = m = n.

L15.5 Further exercises.

1. Let f : R
4 → R

3 be the linear mapping with

f(x1, x2, x3, x4) = (x1, x1+x2, x1+x2+x3).

Write down that associated matrix A , and find v ∈ R
4 such that f(v) = (0, 1, 1) .

2. Let f : R
3 → R

2 and g : R
2 → R

3 be the two mappings:

f(x, y, z) = (x + y, x + y − z), g(s, t) = (3s − t, 3t − s, s).

(i) Complete: g(f(x, y, z)) = (2x+2y+z, ? )

(ii) Find the matrices Mf ,Mg ,Mg◦f with respect to the canonical bases of R
2 and R

3 , and
check that Mg◦f = MgMf .

3. Let V = W = R2[x] , and let D be the linear mapping given by D(p(x)) = p′(x) . Find the
matrix MD with respect to the bases: {1, x, x2} for V and {1, x+1, (x+1)2} for W .

4. Let f : R
3 → R

3 be a linear transformation such that

Kerf = L {(1, 0, 0), (0, 1, 0)} and Im f ⊆ L {(0, 1, 0), (0, 0, 1)} .

Find all possible matrices Mf associated to f with respect to the canonical basis of R
3 .

5. Find bases for the kernel and the image of each of the following linear mappings:

f : R
3 → R

2,2, f(x, y, z) =
(

x −y
y x

)

,

g : R
2,2 → R

4, g
(

x y
z t

)

= (x − 2y, x − 2z, y + t, x + 2t) .

6. Let f : R
3,1 → R

3,1 be the linear transformation defined by A =





1 2 −1
1 1 3
3 5 1



 .

(i) Find a vector v1 such that Kerf = L {v1} .

(ii) Choose v2, v3 such that {v1, v2, v3} is a basis of R
3,1 .

(iii) Check that {f(v2), f(v3)} is a basis of the subspace Im f (it always will be!).
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