Notes 15 - Linear Mappings and Matrices

In this lecture, we turn attention to linear mappings that may be neither surjective nor injective. We show that once bases have been chosen, a linear map is completely determined by a matrix. This approach provides the first real justification for the definition of matrix multiplication that we gave in the first lecture.

L15.1 The linear mapping associated to a matrix. First, we point out that any matrix defines a linear mapping.
Lemma. A matrix $A \in \mathbb{R}^{m, n}$ defines a linear mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by regarding elements of \mathbb{R}^{n} as column vectors and setting

$$
f(\mathbf{v})=A \mathbf{v}, \quad \mathbf{v} \in \mathbb{R}^{n, 1}
$$

Proof. The conditions (LM1) and (LM2) are obvious consequences of the rules of matrix algebra.

Our preference for column vectors means that an $m \times n$ matrix defines a mapping from \mathbb{R}^{n} to \mathbb{R}^{m}, so that m, n are 'swapped over'. Here is an example:

$$
A=\left(\begin{array}{lll}
0 & 2 & 4 \\
3 & 5 & 1
\end{array}\right) \in \mathbb{R}^{2,3} \quad \text { defines } \quad f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}
$$

with

$$
f\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\binom{0}{3}, \quad f\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\binom{2}{5}, \quad f\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\binom{4}{1} .
$$

The j th column of A represents the image of the j th element of the canonical basis of $\mathbb{R}^{n, 1}$.
This example shows that at times we can use A and f interchangeably. But there is a subtle difference: in applying f, we are allowed to represent elements of \mathbb{R}^{n} and \mathbb{R}^{m} by row vectors. Thus it is also legitimate to write

$$
f(1,0,0)=(0,3), \quad f(0,1,0)=(2,5), \quad f(0,0,1)=(4,1),
$$

and more memorably,

$$
\begin{equation*}
f\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{2}+4 x_{3}, 3 x_{1}+5 x_{2}+x_{3}\right) . \tag{1}
\end{equation*}
$$

The last equation shows us how to pass from the rows of A to the definition of f. It turns out that any linear mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has a form analogous to (1), from which we can construct the rows of an associated matrix.

L15.2 The matrix associated to a linear mapping. Let V, W be vector spaces.
Lemma. Let V be a vector space with basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$. A linear mapping $f: V \rightarrow W$ is completely determined by vectors $f\left(\mathbf{v}_{1}\right), \ldots, f\left(\mathbf{v}_{n}\right)$, which (in order to define f) can be assigned arbitrarily.

Proof. Suppose that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Then any element \mathbf{v} of V can be written in a unique way as $a_{1} \mathbf{v}_{1}+\cdots+a_{n} \mathbf{v}_{n}$, and

$$
\begin{equation*}
f(\mathbf{v})=f\left(a_{1} \mathbf{v}_{1}+\cdots+a_{n} \mathbf{v}_{n}\right)=a_{1} f\left(\mathbf{v}_{1}\right)+\cdots+a_{n} f\left(\mathbf{v}_{n}\right) . \tag{2}
\end{equation*}
$$

Thus, $f(\mathbf{v})$ is determined by the n images $f\left(\mathbf{v}_{i}\right)$ of the basis elements. Moreover, any choice of n such vectors allows us to define a linear mapping f by means of (2).

QED
We have seen that a matrix determines a linear mapping between vector spaces, namely from \mathbb{R}^{n} to \mathbb{R}^{m}. The Lemma allows us to go backwards and associate a matrix to any linear mapping from V to W, once we have chosen bases

$$
\begin{equation*}
\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}, \quad\left\{\mathbf{w}_{1}, \cdots, \mathbf{w}_{m}\right\} \tag{3}
\end{equation*}
$$

of V and W (we are assuming that $\operatorname{dim} V=n$ and $\operatorname{dim} W=m$).
Definition. Let $g: V \rightarrow W$ be a linear mapping. The matrix of g with respect to the bases (3) is the matrix $B \in \mathbb{R}^{m, n}$ (also written M_{g} or $M(g)$ if the choice (3) is understood) whose j th column gives the coefficients of $g\left(\mathbf{v}_{j}\right)$ in terms of $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$.

If $B=\left(b_{i j}\right)$, then we are asserting that

$$
\begin{equation*}
g\left(\mathbf{v}_{j}\right)=b_{1 j} \mathbf{w}_{1}+\cdots+b_{m j} \mathbf{w}_{m}=\sum_{i=1}^{m} b_{i j} \mathbf{w}_{i}, \quad \text { for each } j=1, \ldots, n . \tag{4}
\end{equation*}
$$

By the previous lemma, g is completely determined by B. $\mathfrak{W a r n i n g}$: In this definition, we are really thinking of the bases (3) as ordered sets.

To recover our previous correspondence, we need to take $V=\mathbb{R}^{n}$ and $W=\mathbb{R}^{m}$ with their canonical bases. For let $A \in \mathbb{R}^{m, n}$. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the linear mapping defined by setting $f(\mathbf{v})=A \mathbf{v}$ and we choose (3) to be the canonical bases, then $B=M_{f}=A$.

Example. We are perfectly at liberty to apply the Definition to the same vector space with different bases. Let $V=W=\mathbb{R}_{2}[x]$. Choose the basis $\left\{1, x+1,(x+1)^{2}\right\}$ for V and the basis $\left\{1, x, x^{2}\right\}$ for W. Let D be the linear mapping defined by differentiation: $D \mathbf{p}=\mathbf{p}^{\prime}$. Then the matrix of D with respect to the chosen bases is

$$
A=\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) ;
$$

the null column tells us that $D(1)=0$ and the null row tells us that $\operatorname{Im} D$ consists of polynomials of degree no greater than 1 .

L15.3 Compositions and products. With the link between linear mappings and matrices now established, we shall see that composition of matrices corresponds to the product of matrices. Suppose that $B \in \mathbb{R}^{m, n}, A \in \mathbb{R}^{n, p}$, and consider the associated linear mappings

$$
\mathbb{R}^{m, 1} \stackrel{g}{\leftarrow} \mathbb{R}^{n, 1} \stackrel{f}{\leftrightarrows} \mathbb{R}^{p, 1}
$$

defined by $f(\mathbf{u})=A \mathbf{u}$ and $g(\mathbf{v})=B \mathbf{v}$. (It is easier to understand what follows by writing the mappings from right to left.) The composition $g \circ f$ is obviously

$$
B A \mathbf{u} \leftarrow A \mathbf{u} \leftarrow \mathbf{u},
$$

and is therefore associated to the matrix $B A$.

More generally, given vector spaces U, V, W and linear mappings

$$
\begin{equation*}
W \stackrel{g}{\leftrightarrows} V \stackrel{f}{\longleftarrow} U, \tag{5}
\end{equation*}
$$

choose bases for each of U, V, W, and let M_{f}, M_{g} be the associated matrices (the same basis of V being used for both matrices). Then we state without proof the
Proposition. Let $h=g \circ f$ be the composition (5). Then $M_{h}=M_{g} M_{f}$.
This result is especially useful in the case of a single vector space V of dimension n, and a linear mapping $f: V \rightarrow V$. Such a linear mapping (between the same vector space) is called a linear transformation or endomorphism. In these circumstances, we can fix the same basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of V, and consider compositions of f with itself:

Example. Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $f\left(\mathbf{e}_{1}\right)=\mathbf{e}_{2}, f\left(\mathbf{e}_{2}\right)=\mathbf{e}_{3}$ and $f\left(\mathbf{e}_{3}\right)=\mathbf{e}_{1}$. Check that the matrix $A=M_{f}$ (taken with respect to the canonical basis $\left.\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}\right)$ satisfies $A^{3}=I_{3}$.

L15.4 Nullity and rank. Important examples of subspaces are provided by the
Lemma. Let $g: V \rightarrow W$ be a linear mapping. Then
(i) $g^{-1}(0)$ is a subspace of V,
(ii) $\operatorname{Im} g$ is a subspace of W.

Proof. We shall only prove (ii). If $\mathbf{w}_{1}, \mathbf{w}_{2} \in \operatorname{Im} g$ then we may write $\mathbf{w}_{1}=g\left(\mathbf{v}_{1}\right)$ and $\mathbf{w}_{2}=g\left(\mathbf{v}_{2}\right)$ for some $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$. If $a \in F$ then

$$
a \mathbf{w}_{1}+\mathbf{w}_{2}=a g\left(\mathbf{v}_{1}\right)+g\left(\mathbf{v}_{2}\right)=g\left(a \mathbf{v}_{1}+\mathbf{v}_{2}\right),
$$

and so $a \mathbf{w}_{1}+\mathbf{w}_{2} \in \operatorname{Im} g$. Part (i) is similar.
QED
Example. In the case of a linear mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $f(\mathbf{v})=A \mathbf{v}$ with $A \in \mathbb{R}^{m, n}$,

$$
f^{-1}(\mathbf{0})=\left\{\mathbf{v} \in \mathbb{R}^{n, 1}: A \mathbf{v}=\mathbf{0}\right\}
$$

is the solution space of the homogeneous linear system $A \mathbf{x}=\mathbf{0}$. We already know that this is a subspace and we labelled it $\operatorname{Ker} A$. On the other hand, the image of f is generated by the vectors $f\left(\mathbf{e}_{i}\right)$ that are the columns of A :

$$
\operatorname{Im} f=\mathscr{L}\left\{f\left(\mathbf{e}_{1}\right), \ldots, f\left(\mathbf{e}_{n}\right)\right\}=\mathscr{L}\left\{\mathbf{c}_{1} \ldots, \mathbf{c}_{n}\right\}=\operatorname{Col} A
$$

It follows that the dimension of $\operatorname{Im} f$ equals the rank, $r(A)$, the common dimension of Row A and $\operatorname{Col} A$.

In view of this key example, we state the
Definition. (i) The kernel of an arbitrary linear mapping $g: V \rightarrow W$ is the subspace $g^{-1}(\mathbf{0})$, more usually written $\operatorname{Ker} g$ or ker g. Its dimension is called the nullity of g.
(ii) The dimension of $\operatorname{Im} g$ is called the rank of g.

Rank-Nullity Theorem. Given an arbitrary linear mapping $g: V \rightarrow W$,

$$
\operatorname{dim} V=\operatorname{dim}(\operatorname{Ker} g)+\operatorname{dim}(\operatorname{Im} g)
$$

This important result can also be expressed in the form

$$
\operatorname{nullity}(g)+\operatorname{rank}(g)=n
$$

n being the dimension of the space of 'departure'.

Proof. By choosing bases for V and W, we may effectively replace g by a linear mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. But in this case, the previous example shows that $\operatorname{Ker} f=\operatorname{Ker} A$ and $\operatorname{Im} f=$ $\operatorname{Col} A$. We know that $\operatorname{dim}(\operatorname{Col} A)=\operatorname{dim}($ Row $A)=r(A)$, and $($ essentialy by $(\mathrm{RC} 2))$,

$$
\operatorname{dim}(\operatorname{Ker} A)=n-r(A)
$$

The result follows.
QED
The following result is for class discussion:
Corollary. Given a linear mapping $g: V \rightarrow W$ with $\operatorname{dim} V=n$ and $\operatorname{dim} W=m$,

$$
\begin{array}{lcl}
g \text { is injective } & \Leftrightarrow \operatorname{rank}(g)=n \\
g \text { is surjective } & \Leftrightarrow \operatorname{rank}(g)=m \\
g \text { is bijective } & \Leftrightarrow \operatorname{rank}(g)=m=n .
\end{array}
$$

L15.5 Further exercises.

1. Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear mapping with

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{1}+x_{2}, x_{1}+x_{2}+x_{3}\right) .
$$

Write down that associated matrix A, and find $\mathbf{v} \in \mathbb{R}^{4}$ such that $f(\mathbf{v})=(0,1,1)$.
2. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the two mappings:

$$
f(x, y, z)=(x+y, x+y-z), \quad g(s, t)=(3 s-t, 3 t-s, s) .
$$

(i) Complete: $g(f(x, y, z))=(2 x+2 y+z, \quad$? $)$
(ii) Find the matrices $M_{f}, M_{g}, M_{g \circ f}$ with respect to the canonical bases of \mathbb{R}^{2} and \mathbb{R}^{3}, and check that $M_{g \circ f}=M_{g} M_{f}$.
3. Let $V=W=\mathbb{R}_{2}[x]$, and let D be the linear mapping given by $D(\mathbf{p}(x))=\mathbf{p}^{\prime}(x)$. Find the matrix M_{D} with respect to the bases: $\left\{1, x, x^{2}\right\}$ for V and $\left\{1, x+1,(x+1)^{2}\right\}$ for W.
4. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that

$$
\operatorname{Ker} f=\mathscr{L}\{(1,0,0),(0,1,0)\} \quad \text { and } \quad \operatorname{Im} f \subseteq \mathscr{L}\{(0,1,0),(0,0,1)\} .
$$

Find all possible matrices M_{f} associated to f with respect to the canonical basis of \mathbb{R}^{3}.
5. Find bases for the kernel and the image of each of the following linear mappings:

$$
\begin{aligned}
& f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2,2}, \quad f(x, y, z)=\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right), \\
& g: \mathbb{R}^{2,2} \rightarrow \mathbb{R}^{4}, \quad g\left(\begin{array}{cc}
x & y \\
z & t
\end{array}\right)=(x-2 y, x-2 z, y+t, x+2 t) .
\end{aligned}
$$

6. Let $f: \mathbb{R}^{3,1} \rightarrow \mathbb{R}^{3,1}$ be the linear transformation defined by $A=\left(\begin{array}{ccc}1 & 2 & -1 \\ 1 & 1 & 3 \\ 3 & 5 & 1\end{array}\right)$.
(i) Find a vector \mathbf{v}_{1} such that $\operatorname{Ker} f=\mathscr{L}\left\{\mathbf{v}_{1}\right\}$.
(ii) Choose $\mathbf{v}_{2}, \mathbf{v}_{3}$ such that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis of $\mathbb{R}^{3,1}$.
(iii) Check that $\left\{f\left(\mathbf{v}_{2}\right), f\left(\mathbf{v}_{3}\right)\right\}$ is a basis of the subspace $\operatorname{Im} f$ (it always will be!).
